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The sum of the expressions (2) and (3) is an upper estimate for the left-
hand side of (1). Adding these two expressions together, we obtain from
(3) the term hn when m = 0, and for 1 ̂ m < n — 1 we obtain

J«K-J/K. •"xddxw
This gives the right-hand side of (1), and so proves the result.
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ON THE CLASS-NUMBER OF BINARY CUBIC FORMS (I)

H. DAVENPOBT*.

1. The arithmetical theory of binary cubio forms with integral coeffi-
cients was founded by Eisenstein, and further contributions were made
by Arndt, Hermite and others f. Two suoh forms are said to be equivalent
if one can be transformed into the other by a linear substitution with
integral coefficients and determinant ± 1 , and properly equivalent if this
can be aohieved with determinant 1. The discriminant of the form

(1)

is the invariant

(2) D=18abcd+b*c*-4ac*—468d-

and this has the same value for equivalent forms. The forms of given
discriminant, if there are any, fall into a finite number of classes of equiva-
lent forms, or alternatively, of properly equivalent forms. We shall
restrict ourselves to those classes which consist of irreducible forms, that is,
forms which cannot be expressed as the product of a linear form and a
quadratic form with rational coefficients. The object of this paper is to
prove the following result.

THEOREM. / / h(D) denotes the number of classes of properly equivalent
irreducible forms of discriminant D, then

(3) I h(D)= *Lx+O(X*)
D.I Ivo

as J->oo.

* Received and read 15 June, 1900.
f For referonoee, see Diokson's History of the theory of numbers, vol. 3, chapter 12.
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The corresponding result for primitive forms (that is, forms for which
a, 6, c, d have highest common factor 1) follows from this in the usual way,
and difEers only in that the constant on the right of (3) has then to be divided
by C(4).

2. The proof is based on Hermite's definition of a reduced form. The
binary cubic form (1) has the quadratic covariant

(4) Ax*+Bxy+Cy\

where

(5) A = b2-Sac, B = bc-9ad, C = c2-3bd;

this quadratic form being the Hessian of the cubic form, apart from a
numerical factor. If D > 0, the quadratic covariant is positive definite, and
its discriminant has the absolute value

(6) 4 4 C - £ 2 = 3D.

By the classical theory of binary quadratic forms, any cubic form is properly
equivalent to one whose quadratic covariant is reduced, that is, satisfies

("either -A<B^A<C

{or 0^B^A = C.
Such a cubic is said to be reduced.

If two reduced cubics are properly equivalent, their quadratic covariants
must be properly equivalent, and so must be identical. Moreover, it is
known that the only substitutions which transform a reduced quadratic
form into itself are x = x',y = y' and x = —x', y = —y', apart from exoep-
tions when the quadratic form is proportional to x*-\-y2 or x2+xy+y*.
In these oases, there are two or four other substitutions with the property.
Hence two reduced cubics which are equivalent must be either identical or
identically opposite, apart from these possible exceptions.

Since a ̂  0 for irreducible forms, it follows that every class of properly
equivalent irreducible cubio forms is represented by exactly one reduced
form with a > 0, apart from possible exceptions when A = C and B = 0 or
A — B — C. In these cases there may, as far as we know, be one, two or
three reduced forms which all belong to the same class. If h'(D) denotes
the number of irreducible reduced* forms with a> 0, and h±(D) denotes
the same number, but excluding any forms for which A — C and 5 = 0,
or A = B = G, we have

(8) h1'(D)^h(D)^h'{D).

* The terminology is unfortunate, but oan hardly be avoided.
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3. We first establish some inequalities for the coefficients of a reduced
form with 1 ̂  D ^ X, or rather, a form which satisfies the simpler condi-
tions (9). These inequalities do not depend upon a, b, c, d being integers.

LEMMA 1. Let a, b, c, d be real numbers, and let A, B, C be the functions
defined in (5). Suppose that.

(9) \B\ ^A < C and

Then

(10) |a|<X*, \b\

(11) \ad\<XK j6cl

(12) |ac3|<8X, \b3d\<SX,

(13) c2|6c-9ad|<4X.

Proof. From (5), we have the identities

In each of these equations, the central term on the left does not exceed, in
absolute value, the geometrical mean of the two other terms, since B2

Henoe it does not exceed half their sum, and we have

2A2,

Thus

(14) \a\<AC-*, \b\<2Ai, \c\<2C\ \d\ < CA~K

Since A ^ C and

by (9), the results (10), (11), (12) follow.
Also, by (5) and (9),

Combining this with the third of the inequalities (14), we obtain (13).
This proves the lemma.

4. The preceding lemma allows us to effect some slight simplifications.

LEMMA 2. The number of cubic forms, with integral coefficients and
a > 0, which satisfy (9) and for which \B\ = A or A = C, is
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Proof. If \B\ = A, we have

and so d is determined by a, b, c with at most two possibilities. The number
of choices for 6 is 0(X*) by (10), and the number of ohoioes for a and c is

by (12) and (10).
If A = C, we have

and so c is determined by a, b, d, with at most two possibilities. Again
6 = 0(X*), and the number of ohoices for a and d is

This completes the proof of Lemma 2.
It follows from (8) and Lemma 2 that

(15) 2 h(D)= S
z)-i i>-i

It follows also from Lemma 2 that this remains true if, in the definition of
h'(D), we understand by a reduced oubic simply one whioh satisfies

(16) | 5

We shall therefore take h'(D), henceforth, to be the number of irreducible
cubics with a > 0, of discriminant D, whioh satisfy (16).

LEMMA 3. The. number of reducible cubic forms with a > 0 which satisfy
(16), and for which 0 < D ^ X, is O(Xi+l) as X -> oo, for any « > 0.

Proof. Consider first forms for which d = 0. By (10) and (12) of
Lemma 1, the number of ohoioes for a, 6, c is

Now oonsider forms for which d ̂  0. For a reduoible form, there exist
relatively prime integers r, s suoh that

= 0.

Plainly r is a faotor of d, and s is a factor of a. Writing a = axs and d = dlr,
we have
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It follows that c is uniquely determined by av dv r, s, b. Since axdxrs is a
non-zero integer, numerically less than X*, the number of choices for av

dv r, 8 is O(Xi+t) for any e > 0. AIRO b = 0(X*), whence the result.
We now define h"(D) to be the number of cubic forms with a > 0, of

discriminant Z), which satisfy (16), and have

(17) £ h(D)= I h"(D)+O(X*+<).
D - l D - l

5. Having thus simplified the problem, our next step is to complioate
it again. We write rj = -fe.

LEMMA 4. The number of cubic forms with a > 0 which satisfy (lft) and
0 < D < X, and for which a < X\ is

Proof. When a, b, c are fixed, the value of d is restricted by

a\d\<X>, \b*d\<SX, c2\bc-9ad\ < 4X

Hence the number of possibilities for d is*

(18) <9{min (X^ar1, X\b\~\ Xar1^)}.

It suffices to sum this over a, b, c subjeot to 0 < a < X11. Write

m = m(a, b) = min (X* ar1, X161~8).

Summation of (18) over c gives

0 (S min(m, Xa~l c"2)) = 0(mX*a~* •»-»),

on noting that X*a-*m~i > 1, since m <X*a~x. Summation over 6 now
gives

Finally, summing this over a, we obtain

6. By (17) and Lemma 4, the proof of the theorem will be complete,
apart from the evaluation of the constant, when the following lemma has
been established. Note that

* If 6 or e IK zero, the corresponding terra is to b« omitted.
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LEMMA 5. The number of sets of integers a, b, c, d toJiich satisfy (16) and
0<D<X and

(19)

is

(20)

as X-*-co, where K is a positive absolute constant.

Proof. Let R denote the region in four dimensional space consisting
of all points (a, /J, y, 8) which satisfy

(21) |j8y

(22) 4(j32-3ay)(y2-3j88)-0Sy-9a8)2

(23)

The number we have to investigate is the number N of points with integral
coordinates in R. By Lemma 1, the inequalities (10), (11), (12), with
a, j8, y, 8 in place of a, b,c,d, are valid for all points of R. Hence R is bounded,
since |y|3 < SX1'11 and |8| < X*-\ on using (23).

Since the boundary of R consists of a bounded number of portions of
algebraic surfaces of bounded degrees, the region satisfies the conditions of
a theorem recently established elsewhere* Let V denote the volume of R.
Let Va denote the volume of the projection of R on the space a = 0, and V^
the area of the projection of R on the plane a = j8 = 0, and V^ the length
of the projection of R on the line a = j8 = y = 0. By the theorem referred
to,

(24) N-V = 0{max(F., ..., V+t .... VaBy, ..., 1)},

where the constant implied by the symbol 0 is an absolute constant.
We first estimate F«. For a point in the projection of R on a = 0, wo

have

!8|<min(X*-",

Writing

m = m(j8) = min

" Note ou a principle of Lipsohitz ", thia Journal, 26 (1961), 179-183.
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we have |8| <X~*m3, and consequently*

The estimations of Vp, Vy, V< are simpler. For a point in the projection
of H on /? = 0, we. have

whence

(r ) = O(X*).

In the projection of R on y = 0, we have

whence

Vy=0([Xkda T

In the projection of R on 8 = 0, we have

whenoe

For the remaining projections, a very crude estimate suffices. Wo have

and so all two dimensional and one dimensional projections of R have
area or length O(X»).

It follows now from (24) that

(25) N-V=0(X1-»).

We denote by V the volume of the four dimensional region R' defined
by (21) and (22), with (23) replaced by a ̂  0. It should be observed that
the region R' is not bounded, since it contains, for example, the point

* It is for this estimate that (10) is needed.
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(£-\ — 3f"1, — 3£, £8), where f is arbitrarily large. We proceed to prove
that V is nevertheless finite. The proof follows similar lines to that of
Lemma 4. When a, j5, y have given non-zero values, the value of 8 is
restricted to intervals whose total length is

O(min(X*ar\ X\p\~*, Xar1

Integrating this over y from — oo to oo, we obtain

as in the proof of Lemma 4, where

m = m(a, j8) = m i n c e r 1 ,

Integration over jS from — oo to oo gives O(X^a~^) Integration over a
from o to X1 gives O(X). Hence V is finite.

The same calculation allows us to estimate V' — V. We have only to
modify the last step by integrating over a from U to 2 ' , obtaining

Henoe

and it follows from (25) that

(26) N=V'+O(XH).

The volume V was defined by the irfequalities (21), (22), and a > 0. By
considerations of homogeneity, V — KX, where K is a positive absolute
constant, namely the volume of the four dimensional region defined by
a > 0 and

(27) |)Sy-9a8|<j82-3oy<ya-3)38,

(28) 4038-3ay)(ya-3£8)-QSy-9a8)a<l.

Substituting in (26), we obtain (20).

7. The evaluation of K is best carried out in stages. The inequalities
(27) and (28) can be simplified by replacing a, 8 by \a, £8. Observing that
the sign of B can be changed without disturbing A or C by changing the
signs of jS and 8, we see that K is $ of the volume of the region defined by

a > 0 , Q<py—a8</52—ay<y2—£8,

We write
P = j3*-ay, Q = 0y-a8 , * = y«-08.

There is a one-to-one correspondence between 8 and R when /3 and y are
fixed, and dSjdR = —/H. There is also a one-to-one correspondence
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between y and P when a and /? are fixed, and dy/dP = —a'1. Heneo

extended over the region

(29) a>0, 0<Q<P<R,

Here Q must be regarded as a function of a, ft, P, R; and its expression in
this form is easily seen to be

Q = P jSa- i+JBa^-Paa- 1 ^ .

We divide K into Kx and A'2, corresponding to /? > 0 and fl < 0. In
the former oase, we put

(30) a = f-»ir«, j 8 = r ^ J ,

obtaining

extended over positive £, r), P, R satisfying (29), where now

To simplify the conditions further, we transform from £, 77. P, ft. to T, 0,
u, v, where

We obtain

Kx = f jf f f Te-lvr1trldTd0dudv,

extended over positive T, 8, u, v satisfying

(Xv+tr1—u<B<\,

Writing u = v+v~1—w, we have

TdTdBdvdw•-m- d(v*+l-vw)'

extended over

(31) 0 < O ; < ^ < 1 , T*< (4-w*)-1, T>0, v>0.

The condition arising from u > 0 is necessarily satisfied, since w < 1 and
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A similar treatment applies to K2, on writing j3=— £~*TJ* in (30).
The final formula differs only in the sign of w in the denominator. By
addition of the two formulae,

j f - A [ \ [ T(v2+l)dTdddvdw

extended over (31). Integrating over v from 0 to oo, we have

r (v*+l)dv (* dx -T

J o
by the substitution v—v~x = a;. Also, integrating over T, we have

.'I M 4 »"•-)

J
Hence

fC = ^T\1d6[e dw
9 Jo 6 Jo (4-w»j»'

Writing 0 = 2 sin <£ and w = 2 sin 0, we obtain

This gives (3).

University College,
London.

ON THE CLASS-NUMBER OF BINARY CUBIC FORMS (II)

H. DAVENPORT*.

1. In the preceding paper (which will be referred to as I), I obtained an
x

asymptotic formula for S h(D), where h(D) denotes the number of classes

of properly equivalent irreducible binary cubic forms, with integral coeffi-
cients, of given discriminant D. The object of the present note is to prove
a similar result for forms of negative discriminant, which is as follows.

THEOREM. We have

( l ) i M-A) = ^

as X-±co.

* Received and read 16 June, 1960.


