
Exercise Set 8 – Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Monday, April 25, 2016

Do one of the two problems. (You are welcome to do both of course, but this is not required or
expected.) The first problem is recommended for those interested in number theory; the second is
recommended for anyone interested in algebraic geometry or commutative algebra.

(1) This exercise is adapted from Section 8.8 of Washington’s book. Please do not read the
solution given there!

Let E be the elliptic curve over Q given by y2 = x(x − 2p)(x + 2p), where p is a prime ≡ 9
(mod 1)6. Then one element of the 2-Selmer group of E is the curve

C = C1,p,p : u2 − pv2 = 2p, u2 − pw2 = −2p.

(Both equations together are the curve – it takes two equations to cut out a curve in A3; one
equation only gives you a surface.) Prove that it has p-adic points for all primes p ≤ ∞, but
does not have any rational points – therefore implying that it represents a nontrivial element
of the Shafarevich-Tate group.

One outline for such a proof (which you will probably follow, but feel free to deviate from it) is
as follows.

(a) Suppose that (u, v, w) is a rational point on C. Prove that we can write

u =
pr

e
, v =

s

e
, w =

t

e

where e, u, v, w are integers and e is coprime to prst.

(b) Substituting into the original equation, prove that s2 + 4e2 = t2 and that s is coprime to
2e. Recall that there are thus coprime integers m and n with

2e = 2mn, s = m2 − n2, t = m2 + n2.

(c) Prove that pr2 = m4 +n4, that m 6≡ n (mod 2), and that any prime divisor q of r does not
divide either m or n.

(d) With q as above, argue that (m/n)4 ≡ −1 (mod q). Conclude that q ≡ 1 (mod 8), and
then explain why r is.

(e) Explain why we can conclude that m4 + n4 ≡ 9 (mod 16), and why this is impossible.
Conclude that C(Q) = ∅.

(f) Prove that C has a real point.

(g) For q = 2, prove that there exists a solution in Q2 of the form

u =
1

2
, v =

v1
2
, w =

w1

2
.

You will use the fact that any integer ≡ 1 (mod 8) has a square root in Q2. (This is all
you need to know about Q2 to solve this part.)



(h) For q = p, a solution is given by

u = 0, v =
√
−2, w =

√
2.

If you know Hensel’s lemma (or look it up), you can use it to give a proof that Qp contains
square roots of 2 and −2. Otherwise, take this for granted and go on to the next part.

(i) Finally, we prove that there are Qq-adic points for all q 6= 2, p,∞. For any such q, we
assume that there is a solution in Fq, i.e. a solution modulo q. This follows from the Hasse
bound (i.e., the Weil conjectures), except for small q which can be treated in an ad hoc
manner.

Fix any such q, and solution (u1, v1, w1) modulo q. Then (by construction of the q-adic
numbers) there is a q-adic solution to C if and only if there are solutions (uk, vk, wk) modulo
qk for each integer k ≥ 1, with (uk+1, vk+1, wk+1) ≡ (uk, vk, wk) (mod q)k.

Prove, by induction on k, that there are such solutions (uk, vk, wk).

(2) Let A, B, C be abelian groups (with the operation written additively) together with the action
of an abelian group G. Suppose that these fit into an exact sequence

0 −→ A
φ−→ B

ψ−→ C −→ 0.

Prove that this induces a long exact sequence

0 −→ H0(G,A) −→ H0(G,B) −→ H0(G,C) −→ H1(G,A) −→ H1(G,B) −→ H1(G,C).

(Note that the last map does not have to be surjective.)

A suggested outline for doing this is as follows:

(a) Recall that H0(G,M) just consists of the elements of M which are fixed by every element
of G. Prove that we get an exact sequence

0 −→ H0(G,A) −→ H0(G,B) −→ H0(G,C).

(b) Recall that H1(G,M) consists of cocycles modulo coboundaries, where a cocycle is a
map f : G → M with f(g1g2) = f(g1) + g1f(g2) for all g1, g2 ∈ G, and a coboundary is
any map G→M of the form f(g) = gm−m for some fixed m ∈M .

Prove that a homomorphism α : M →M ′ of G-modules induces a map

φ∗ : H1(G,M)→ H1(G,M ′),

defined by (φ∗(f))(g) = φ(f(g)).

(c) Prove that the maps φ and ψ induce an exact sequence

H1(G,A) −→ H1(G,B) −→ H1(G,C).

(Note that it is claimed only that the image of the first map is the kernel of the second.)



(d) Define a map
δ : H0(G,C) −→ H1(G,A)

as follows. For any c ∈ H0(G,C), c = ψ(b) for some b. Define δ(c) to be the map
g → g · b − b. Prove that δ is well-defined: that this indeed is a map into A (and not just
B); that is satisfies the cocycle condition, and that if a different preimage b of c is chosen,
the two maps δ(c) differ only by a coboundary.

(e) Prove that the kernel of δ is the image of H0(G,B) in H0(G,C).

(f) Prove, finally, that the image of δ is the kernel of φ∗.

– For a proof, see any book on group cohomology. L. Washington, Elliptic Curves

– Everything follows from a straightforward, but tedious, diagram chase that we
leave to the reader. J. Silverman, The Arithmetic of Elliptic Curves

– For by a basic theorem of homological algebra, the Hq(G,A) so defined satisfy
the exactness property... Cassels and Frohlich, ed., Algebraic Number Theory (which
purports to give an introduction to the subject form scratch)

– The proof of the exactness is then routine, and consists in chasing around
diagrams. It should be carried out in full by the reader who wishes to acquire a
feeling for this type of triviality. S. Lang, Algebra

– Take any book on homological algebra, and prove all the theorems without
looking at the proofs given in that book. Exercise from the second edition of S. Lang,
Algebra

– We will not print the proof in these notes, because it is best done visually. C.
Weibel, An Introduction to Homological Algebra

The only complete proof I have seen in print is in Hatcher’s book on algebraic topology. But
you can watch Jill Clayburne present a proof of the (closely related) Snake Lemma here:

https://www.youtube.com/watch?v=etbcKWEKnvg

Please don’t be That Guy.


