
Midterm Examination - Math 701, Frank Thorne (thorne@math.sc.edu)

Due Monday, November 6 in class

Instructions:

• This is a timed, take-home, closed-book exam. No notes, books, looking for answers on
the internet, etc., etc.

• Please take the exam at any time and place of your choosing. I recommend you find some
place quiet with no distractions.

• You have four hours to complete the exam. Except in case of unforeseen circumstances,
it is expected that these be consecutive.

• After you’ve finished, please do not discuss the exam before it’s due unless you
are sure that nobody who hasn’t taken it yet is within earshot.

• You should bring sufficient blank paper and write your answers on this. Alternatively you
may TeX it if you wish but this is not expected.

• If you find any questions ambiguous, or if you’re not sure if your answer is acceptable, explicitly
describe your interpretation and/or concerns as part of your solution.

• GOOD LUCK!



1. Compute the number of automorphisms of Z/5Z× Z/5Z and of Z/25Z.

Solution. Any automorphism φ of Z/5Z × Z/5Z is determined by φ((1, 0)) and φ((0, 1));
conversely, choosing any a, b, c, d ∈ Z/5Z, the map defined by φ(1, 0) = (a, b) and φ(0, 1) =
(c, d) is a homomorphism.

For any such φ, Im(φ) has order dividing 25, so it is 1, 5, or 25. If it equals 25 then φ is
surjective, and therefore injective as well, so it is an automorphism. Therefore we must count
the number of such φ.

If φ((1, 0)) = (0, 0) then φ will fail to be injective, so assume that φ((1, 0)) = (a, b) 6= (0, 0).
Then the image of φ will include all Z/5Z-multiples of (a, b); if φ((0, 1)) = (c, d) is one of
these multiples, then φ will fail to be injective, but if it is not a multiple, then Im(φ)) will
have at least six, and hence 25 elements.

Therefore, for each of the 24 choices of (a, b), there are 20 possible choices of (c, d). So the
total number of automorphisms is 24 · 20 = 480.

There are many fewer automorphisms of Z/25Z. As with before, the automorphisms φ all
satisfy φ(1) = a for some a ∈ Z/25Z, and are determined by this a.

If 5 | a, then Im(φ) will lie in the proper subgroup of multiples of 5; conversely, if 5 - a, then
φ will have trivial kernel. (If ab is divisible by 25 and a is coprime to 5, then by elementary
number theory b must be a multiple of 25.)

So the automorphisms are in bijection with the elements of Z/25Z which are not multiples of
5, of which there are 20.

2. Consider the usual action of GL2(C) on C2, given by(
α β
γ δ

)(
x
y

)
=

(
αx+ βy
γx+ δy

)
.

(a) Compute explicitly the stabilizer H of this action on

(
1
0

)
.

Solution. Upon plugging x = 1, y = 0 into the equation above we see immediately that
α = 1 and γ = 0, and so

H =

{(
1 β
0 δ

)
: β ∈ C, δ ∈ C×

}
.

Here δ cannot be 0 (otherwise the matrix will be non-invertible) but is otherwise arbitrary.

(b) Writing C for the group of complex numbers (with group operation addition) and C× for
the group of nonzero complex numbers (with group operation multiplication), prove that
H contains subgroups N and K isomorphic to C and C×, respectively. Moreover, prove
that N is normal (using any familiar facts from linear algebra if you like).

Solution. We may take

N =

{(
1 β
0 1

)
: β ∈ C

}
,

K =

{(
1 0
0 δ

)
: δ ∈ C×

}
.



Isomorphisms to C and C× are defined by taking the β and δ coordinates respectively,
and these are isomorphisms because(

1 β
0 1

)(
1 β′

0 1

)
=

(
1 β + β′

0 1

)
,

(
1 0
0 δ

)(
1 0
0 δ′

)
=

(
1 0
0 δδ′

)
.

(c) Prove that H is isomorphic to a semidirect product NoφK for a nontrivial homomorphism
φ : K → Aut(N), which you should describe. N is normal because it is the kernel of the
determinant homomorphism to C×.

Solution. This follows because N and K are subgroups of H which intersect in the
identity, and for which NK = H. To check the latter, observe that(

1 β
0 1

)(
1 0
0 δ

)
=

(
1 βδ
0 δ

)
,

and notice that for any nonzero δ, βδ assumes all values in C.

Since N and K are already subgroups of H, the automorphism φ : K → Aut(N) must be
given by the conjugation action of K on N , namely

φ(k) = {n→ knk−1}.

In particular,

φ

((
1 0
0 δ

))
=

{(
1 β
0 1

)
→
(

1 0
0 δ

)(
1 β
0 1

)(
1 0
0 δ−1

)
=

(
1 βδ−1

0 δ

)}
.

(d) Prove that the stabilizer of any nonzero v ∈ C2 is isomorphic to this same semidirect
product.

Proof. GL2(C) acts transitively on C2 − {(0, 0)}. Writing v = (1, 0), if gv is any other
nonzero vector, then Stab(gv) = gStab(v)g−1, and conjugate subgroups of the same group
are isomorphic.

3. Let G be a non-abelian group with 10 elements.

(a) Prove that G is isomorphic to D5.

Solution. By Cauchy’s theorem, G contains elements r and s of order 5 and 2 respectively,
generating subgroups R and S. These intersect trivially, and RS is all of G. (The elements
risj with 0 ≤ i ≤ 4 and j ∈ {0, 1} are easily seen to be distinct.)

Moreover, R is normal in G. There are multiple ways to see this. Perhaps the easiest
(although not the most direct): the number of 5-Sylow subgroups of G is ≡ 1 (mod 5),
and if there were more than 1 then these subgroups would account for more than 10
elements. So the 5-Sylow subgroup is unique, hence normal.

Thus G is isomorphic to a semidirect product Roφ S for a homomorphism S → Aut(R)
which matches conjugation, i.e., such that srs−1 = σ(r) where σ is an automorphism of
R order 2. The only such automorphisms are the identity and inversion. If it were the



identity, we would have srs−1 = r, so that sr = rs, which would imply that r and s
commute, and hence that G be abelian. Since this were assumed to not be the case we
have srs−1 = r−1, i.e. sr = r−1s.

We therefore have
G = 〈r, s : r5 = s2 = 1, sr = r−1s〉,

i.e. G is D5.

(b) G has 5 conjugate subgroups of order 2. (Why?) The action of G by conjugation on
these subgroups induces a homomorphism G → Sym(5). Describe this homomorphism
(including its image and kernel) explicitly.

Solution. The subgroups of order 2 correspond to the five elements of D5 of order 2.
(We know this a priori, but notice that the number of 2-Sylow subgroups is odd, divides
5, and is not 1 since G is abelian).

We represent D5 as the subgroup of S5 generated by r = (1 2 3 4 5) and s = (1 5)(2 4),
with rs = sr−1. Write s = s3, and notice that each conjugate of s fixes exactly one
element. These are the five elements of order 2; write si for i ∈ {1, 2, 3, 4, 5} for them,
where the subscript indicates the fixed element. Specifically, we have

s1 = (2 5)(3 4), s2 = (1 3)(4 5), s3 = (1 5)(2 4), s4 = (1 2)(3 5), s5 = (1 4)(2 3).

The five 2-Sylow subgroups are of the form {1, si}, so we just need to determine the
conjugation action of G on the si. We have

rsir
−1 = si+1,

where i+ 1 is to be considered modulo 5, because the permutation on the left fixes i+ 1.
So, in our homomorphism G→ Sym(5), r maps to the permutation {si → si+1}.
We can also check that we have

s3s1s
−1
3 = s5, s3s2s

−1
3 = s4, s3s3s

−1
3 = s3, s3s4s

−1
3 = s2, s3s5s

−1
3 = s1.

This can be verified directly. The shortest proof observes that, for each i, s3sis
−1
3 has to

fix s3(x), where x is the unique element of {1, 2, 3, 4, 5} fixed by sI .

We therefore observe that the map of ordered sets {1, 2, 3, 4, 5} → {s1, s2, s3, s4, s5} is such
that the action of D5 = 〈r, s〉 on {1, 2, 3, 4, 5} matches exactly its action by conjugation on
{s1, s2, s3, s4, s5}, and on the corresponding 2-Sylow subgroups consisting of 1 and these
elements. Therefore, the homomorphism D5 → S5 is an isomorphism onto its image.

4. The following question concerns subgroups of Sym(p), where p is an odd prime.

(a) Let H be a transitive subgroup of Sym(p): that is, for any integers m and n in {1, 2, . . . , p}
there exists σ ∈ H with σ(m) = n.

Prove that p | |H| and that H contains a p-cycle.

Solution. For each i ∈ {1, 2, · · · , p} write Hi for the subset of σ ∈ H with σ(1) = i.
Then, choosing any σi ∈ Hi, we have Hi = σiH1. So all the Hi are equal in size. Therefore
p | |H|, and H contains an element of order p (necessarily a p-cycle) by Cauchy’s Theorem
(or Sylow’s theorem).



(b) If in addition H contains a transposition, prove that H = Sym(p).

Solution. This is essentially brute force. Without loss of generality, assume that the
p-cycle is (1 2 3 · · · p). (This will be true after conjugating H by a suitable element of
Sym(p).) Further, by cyclically permuting the elements if needed, we may assume the
transposition is of the form (1 1 + k) for some k ≥ 1. (We cannot assume k = 1.)

If H contains any two-cycle with b− a ≡ k (mod p), then H contains all such two-cycles,
because

(1 2 3 · · · p)i(a b)(1 2 3 · · · p)−i = (a+ i b+ i),

where a+ i and b+ i are to be interpreted modulo p.

But we have
(1 1 + k)(1 + k 1 + k + j)(1 1 + k) = (1 1 + k + j),

so if H contains all two-cycles with b− a ≡ k (mod p) and with b− a ≡ j (mod p), then
it contains all two-cycles with b − a ≡ j + k (mod p). In other words, the set of k for
which H contains all two-cycles of the form (a b) for all a, b with b− a ≡ k (mod p) is a
nontrivial subgroup of Z/p, hence all of Z/p. So H contains all the transpositions and is
hence all of Sym(p).

(c) Now let K be a normal subgroup of Sym(p), and suppose that K contains a transposition
(but don’t assume without proof that it contains a p-cycle). Prove that K = Sym(p).

Solution. All the transpositions are conjugate, hence contained in K (if K is normal).
So K contains all the transpositions and is hence all of Sym(p).


