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Number Field Counting

Definition
For any integer d ≥ 1, write

Nd(X ) := #{K : [K : Q] = d , |Disc(K )| < X}.

and for each transitive subgroup G ⊆ Sd ,

Nd(X ,G ) := #{K : [K : Q] = d , |Disc(K )| < X , Gal(K c/Q) = G},

so that
Nd(X ) =

∑
G⊆Sd

transitive

Nd(X ,G ).
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Basic Results

Theorem (Finiteness – Hermite)
For each d and X , Nd(X ) is finite.

Theorem (Minkowski’s Lower Bound)
If [K : Q] = d , then

|Disc(K )| ≥
(
dd

d!

)2 (π
4

)d
.

In other words,

Nd(X ) = 0 for X < (5.803 · · ·+ o(1))d .
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The Inverse Galois Problem

Conjecture
For every d and transitive subgroup G ⊆ Sd ,

X big enough =⇒ Nd(X ,G ) 6= 0.

Proof.

(Your Name Here)
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Malle’s Conjecture

Conjecture
In fact we have

Nd(X ,G ) ∼ c(G )X 1/a(G)(logX )b(G),

where a(G ) ≥ 1 and b(G ) ≥ 0 are explicitly described integers.
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Four Methods to Count Number Fields

I Generator methods (Schmidt, Ellenberg-Venkatesh, ...)

Count in terms of appropriate algebraic integers.
Usually seeking upper bounds.

I Abelian methods (Cohn, Wright, Mäki, ...)
Use class field theory and/or Kummer theory.
Get good results when G is abelian.

I Parametrization methods (Davenport-Heilbronn, Bhargava, ...)
Count lattice points in prehomogeneous representations.
Brilliant when it works.

I Inductive methods (Klüners, Cohen-Diaz-Olivier, ...)
Obtain old results from new.
Expand the scope of existing methods.
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Generator methods

If α ∈ OK is a generator of K/Q, then Z[α] ⊆ OK and

|Disc(OK )| = Disc(Z[α]) · [OK : Z[α]]−2

= Disc(minpolyα) · [OK : Z[α]]−2.

Theorem (Schmidt)
For each d we have

Nd(X )� X
d+2
4 .
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Schmidt’s proof

I By Minkowski’s theory, there exists α ∈ OK with trace 0 and
||α||σ � |Disc(K )|

1
2n−2 for all embeddings σ : K 7→ C.

I Assume that Q(α) = K . (If not, induct.)
I The minimal polynomial of α is

minpolyα(x) =
∏
σ

(x −σ(α)) = xn + a2(α)xn−2 + · · ·+ an(α),

with ai (α) ∈ Z, |ai (α)| � |Disc(K )|
i

2n−2 .

I There are at most O(X
d+2
4 ) possibilities.
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Abelian methods

Given a base number field K .

Theorem (Class Field Theory)
Abelian extensions L/K of degree d and conductor dividing m are
in bijection with index d quotients of Clm(L).

Theorem (Kummer Theory)
If in addition µd ⊆ K , then abelian extensions L/K of exponent d
are in bijection with subgroups of K×/(K×)d .
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Cyclic cubic fields

Theorem (Cohn, 1954)
We have∑
K cyclic cubic

1
Disc(K )s

= −1
2

+
1
2

(
1+

1
34s

) ∏
p≡1 (mod 6)

(
1+

2
p2s

)
.

Corollary
We have

N3(X ,C3) ∼ 11
√
3

36π

∏
p≡1 (mod 6)

(p + 2)(p − 1)

p(p + 1)
.
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General abelian number fields

Theorem (Wright, Mäki, but read Wood’s treatment)
Let G be any abelian group of order n. Then we have∑

Gal(K/Q)'G

1
Disc(K )s

= finite sum of Euler products .

Corollary
We have

N|G |(X ,G ) ∼ c(G )X 1/a(G)(logX )b(G),

where a(G ) and b(G ) are explicit and c(G ) is ‘explicit’.
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Prime degree (Cohen, Diaz y Diaz, Olivier 2002)

“It is claimed that this constant can be explicitly computed as a a finite product
of local adelic integrals, but in practice this has not been done, even for the
simplest Abelian groups G , except for G = C2...”
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The parametrization method
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Intersections of conics

Example. Solve x4 − x3 + 3x2 − 5x + 1 = 0.

y = x2, y2 − yx + 3y − 5x + 1 = 0.
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A sample theorem

Theorem (Bhargava, Annals, 2004)
There exists an explicit, discriminant preserving bijection between
the following two sets:

I GL3(Z)×GL2(Z)-orbits on the lattice (Sym2Z3 ⊗ Z2) of
pairs of integral ternary quartic forms.

I Pairs (Q,R), where Q is a quartic ring and R is a cubic
resolvent of Q.
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A Bhargava-style metatheorem

Theorem
There exists an explicit, discriminant preserving bijection between
the following two sets:

I G (Z)-orbits on a lattice V (Z); where G is an algebraic group
acting (often prehomogeneously) on a vector space V ;

I Some nice class of arithmetic objects we want to count.
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How to prove Bhargava-style theorems

I Read old papers in representation theory, invariant theory, and
commutative algebra for inspiration.

(Or Omar Khayyam!)
I Pick your favorite complex representation (G ,V ) (which

should be defined over Z, and for which the invariant theory
should be nice).

I Try to prove that the G (Z)-orbits on V (Z) parametrize
something. Hope to get lucky.
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Counting Low Degree Fields

Theorem (Davenport-Heilbronn, Bhargava, et al.)
We have

N3(X ) =
1

3ζ(3)
X +

4(1 +
√
3)ζ(1/3)

5Γ(2/3)3ζ(5/3)
X 5/6 + O(X 2/3(logX )2.09),

N4(X ,S4) ∼ 5
24

∏
p

(1 + p−2 − p−3 − p−4)X ,

N5(X ) ∼ 13
130

∏
p

(1 + p−2 − p−4 − p−5)X .

These are now lattice point counting problems.
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Inductive Methods (New Results From Old)

Theorem (Cohen, Diaz y Diaz, Olivier)
We have

N4(X ,D4) ∼ X · 3
π2

∑
D

2−r2(D)

D2
L(1,D)

L(2,D)
,

where the sum ranges over all fundamental discriminants 6= 1.
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Counting by other invariants

Theorem (Belabas-Fouvry, Bhargava-Wood)
We have

N6(X ,S3) ∼ 2
9

(
4
3

+
1

35/3 +
2

37/3

)∏
p 6=3

(
1 + p−1 + p−4/3) · X 1/3.

Idea: If K is an S3-cubic with Disc(K ) = Dn2, then
Disc(K̃ ) = D3n4 apart from the 2- and 3-adic factors.
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Idea: If K is an S3-cubic with Disc(K ) = Dn2, then
Disc(K̃ ) = D3n4 apart from the 2- and 3-adic factors.
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Direct products

Theorem (Wang, Masri-T.-Tsai-Wang)
Let d ∈ {3, 4, 5} and let A be any abelian group. Then

Nd |A|(X , Sd × A) ∼ c(Sd × A)X 1/|A|.

Idea: If K is an Sd -field and L is an A-field, then usually K and L
are linearly disjoint with

Disc(KL) = ∗ ·Disc(K )|A|Disc(L)d ,

where ∗ is divisible only primes ramified in both K and L.

(This doesn’t happen too often.)
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Wreath products

Theorem (Klüners +ε)
Assume a ‘weak Malle conjecture’ of the form

Nd(X ,G )� X 3/2.

Then we have
N2d(X ,C2 o G ) ∼ c(C2 o G )X .

Idea. A quadratic extension of a G -extension usually has Galois
group C2 o G .
Note. D4 ' C2 o C2; subsumes Cohen-Diaz-Olivier as a special case.
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Solvable groups

Theorem (Alberts, 2018)
Assume that “the m-torsion in class groups is small on average”.
Then, for every solvable transitive subgroup G ⊆ Sd we have

Nd(X ,G )� X 1/a(G)+ε.

Further development of the same family of ideas.

Also: See further related works by Altuğ, Lemke Oliver, Mehta,
Shankar, Taniguchi, Varma, Wilson, and previously named authors
(in various permutations).

Frank Thorne Number Field Counting



Solvable groups

Theorem (Alberts, 2018)
Assume that “the m-torsion in class groups is small on average”.
Then, for every solvable transitive subgroup G ⊆ Sd we have

Nd(X ,G )� X 1/a(G)+ε.

Further development of the same family of ideas.

Also: See further related works by Altuğ, Lemke Oliver, Mehta,
Shankar, Taniguchi, Varma, Wilson, and previously named authors
(in various permutations).

Frank Thorne Number Field Counting



Solvable groups

Theorem (Alberts, 2018)
Assume that “the m-torsion in class groups is small on average”.
Then, for every solvable transitive subgroup G ⊆ Sd we have

Nd(X ,G )� X 1/a(G)+ε.

Further development of the same family of ideas.

Also: See further related works by Altuğ, Lemke Oliver, Mehta,
Shankar, Taniguchi, Varma, Wilson, and previously named authors
(in various permutations).

Frank Thorne Number Field Counting



Part 2

Theorem (Lemke Oliver-T., 2020)
We have

Nd(X )� ...
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