Midterm Examination 2 - Math 374, Frank Thorne (thorne@math.sc.edu)

Wednesday, November 8, 2017

Please work without books, notes, calculators, or any assistance from others.

(1) (12 points) Give a recursive definition for the set of all strings of well-balanced parentheses.

Example. (()(())) is such a string, and (()))(() is not.

Solution. Let S be this set. One possible solution is:

- The empty string is in S.
- If a is in S, then so is (a).
- If a and b are in S, then so is ab.

Variants are possible: for example, adding redundant rules is okay. One bonus point for anyone answering in *Backus-Naur form*.

- (2) (10 points for equation, 10 points for proof) Find a closed form formula for the recurrence relation given by:
 - T(1) = 1,
 - T(n) = T(n-1) + n for $n \ge 2$.

Use induction to prove that your formula is correct.

Solution. The correct formula is $T(n) = \frac{n(n+1)}{2}$, as one may verify by guess-and-check. The first few values are 1, 3, 6, 10, 15, 21, 28, ... Probably the best way to get started is to compare this to the sequence n^2 or $n^2/2$ and work out how to tweak your guess.

Here is a proof by induction. The formula holds for n = 1, because $T(1) = \frac{1(1+1)}{2} = 1$. Assume, for some positive integer k, that

$$T(k) = \frac{k(k+1)}{2}.$$

Then, we have

$$T(k+1) = T(k) + (k+1)$$

= $\frac{k(k+1)}{2} + k + 1$
= $\frac{k(k+1) + 2(k+1)}{2}$
= $\frac{(k+2)(k+1)}{2}$,

which verifies the inductive hypothesis for n = k + 1. The result therefore follows by induction.

- (3) (6 points each) What is the cardinality of each of the following sets? (That is, how many elements do they contain?)
 - (a) $A = \{a, \{b, c\}, \{d\}\}$
 - (b) $B = \{a, \{a, \{a\}\}\}$
 - (c) $C = \{\{a\}, \{\{a\}\}\}$

Solution. A contains 3 elements: a, $\{b, c\}$, $\{d\}$. B contains 2 elements: a and $\{a, \{a\}\}$. C contains 2 elements: $\{a\}$ and $\{\{a\}\}$.

(4) (10 points) In a programming language, an identifier must be a single upper-case letter or an upper-case letter followed by a single digit. How many identifiers are possible?

Solution. There are 26 upper case letters and 10 digits, and so a letter may be followed by a digit in $26 \cdot 10 = 260$ ways. The total number of ways is 26 + 260 = 286.

- (5) (8 points each) A survey of 150 college students reveals that 83 own cars, 97 own bicycles, 28 own motorcycles, 53 own a car and a bicycle, 14 own a car and a motorcycle, 7 own a bicycle and a motorcycle, and 2 own all three.
 - (a) How many students own a bicycle and nothing else?

Solution. Of the 97 students who own bicycles, subtract 53 (who own cars also) and 7 (who own motorcycles also) but then you have to add 2 because you subtracted these students twice.

97 - 53 - 7 + 2 = 39.

(b) How many students do not own any of the three?Solution. By Inclusion-Exclusion, the number of students that own any one of them is

83 + 97 + 28 - 53 - 14 - 7 + 2 = 136.

So the number of students that own none is 150 - 136 = 14.

- (6) (8 points each) A congressional committee of three is to be chosen from a set of five Democrats and four Republicans.
 - (a) In how many ways can the committee be chosen?

Solution. An arbitrary choice of 3 out of 9 people: C(9,3).

- (b) In how many ways can the committee be chosen if it must include at least one Democrat? **Solution.** There are C(4,3) committees with only Republicans, so C(9,3) C(4,3).
- (c) In how many ways can the committee be chosen if it cannot include both Democrats and Republicans?

Solution. There are C(4,3) committees with only Republicans, and C(5,3) with only Democrats, so C(4,3) + C(5,3).