
Hamiltonian and Eulerian 
Graphs

Eulerian Graphs
If G has a trail v1, v2 , …vk  so that each edge of G is represented exactly once 

in the trail, then we call the resulting trail an Eulerian Trail. If the trail is 
really a circuit, then we say it is an Eulerian Circuit. A graph is said to be 
Eulerian if it contains an Eulerian circuit.

The following theorem characterizes Eulerian graphs. It is true for 
multigraphs as well as graphs.

Theorem (Euler). A connected graph is Eulerian if and only of each vertex 
has even degree.

This comes from the famous Seven Bridges of Königsberg problem where it 
was asked if it was possible to cross each bridge exactly once and end up 
where you started. Thus the question is whether the corresponding 
multigraph is Eulerian.

Exercise: Show half of the proof of Euler’s Theorem by showing that if G is 
Eulerian, then all of its vertices have even degree.

Assuming the truth of Euler’s Theorem, verify the corollary below.



Corollary. A non-trivial connected graph G has an Eulerian trail iff it 
contains exactly two odd vertices. Moreover, in this case, the trail’s terminal 
vertices are the two odd vertices.

These results make it easy to determine that certain puzzles of the variety, 
“Can you trace the figure below without lifting your pencil from the paper?” 
are impossible to do.

We will concentrate our attention on a more studied notion of Hamiltonian 
Graphs.

Hamiltonian Graphs

A spanning cycle in a graph is called a Hamiltonian cycle, and a spanning 
path is called a Hamiltonian path. A graph is said to be Hamiltonian if it has 
a spanning cycle and it is said to be traceable if it has a Hamiltonian path.

The graph above, known as the dodecahedron, was the basis for a game 
concocted by Hamilton which he dubbed the Around the World Game. Each 
vertex was given the name of a world city and the object was to visit each 
city and return to your starting point without ever visiting the same city 
twice. A picture of the actual puzzle is shown below.



Thus the problem is to find a Hamiltonian cycle in the dodecahedron 
graph. This is not a particularly challenging thing to do, and the puzzle 
was not a financial success.

Determining whether a graph has a Hamiltonian cycle can be a very 
difficult problem and there is no good characterization for Hamiltonian 
graphs. 

To appreciate the problem, the Petersen graph, and the two graphs 
below are not Hamiltonian and we will soon see a proof of this. But at 
this point, can you concoct an argument to show why any of these three 
graphs are not Hamiltonian?

    



Note that a Hamiltonian graph is clearly 2-connected. Is the converse true? 
No, and in fact there are many simple examples of 2-connected graphs that are 
not Hamiltonian.

A 2-connected bipartite graph of odd order would be such an example. More 
generally, any complete bipartite graph Kr ,s  2 ≤ r < s  would be an example. 

These examples suggest a somewhat more general idea which we state next as 
a theorem. We let k(H ) denote the number of components in the graph H.

Theorem. If a connected graph G contains a set S of vertices such that 
k G – S( ) > S , then G is not Hamiltonian.

Example: The graph below is not Hamiltonian since we could choose the set S 
to be the three vertices in the center, and then G – S would have four 
components.

                                                 

One immediate and useful consequence of the previous theorem is the result 
below.

Theorem. If G is a connected bipartite graph having bipartition {A, B} and 
A ≠ B , then G is not Hamiltonian.

[As an exercise, prove this.]

Thus if we can properly color the vertices of a connected graph red and blue 
and the number of red vertices is different from the number of blue vertices, 
then the graph is not Hamiltonian.

We can also see that this is true without using the previous theorem, since if a 
bipartite graph is Hamiltonian and is properly colored red and blue, then its 
Hamiltonian cycle must be of even order and every consecutive pair of vertices 
will be red and blue.



The Petersen graph shows that it is also the case that a 3-connected graph need 
not be Hamiltonian. In fact, no ‘amount of connectivity’ will suffice to make a 
graph Hamiltonian.

Exercise. Show that for any positive integer k, there is a k-connected graph that 
is not Hamiltonian.

Since there is no good characterization for Hamiltonian graphs, we must 
content ourselves with criteria for a graph to be Hamiltonian and criteria for a 
graph not to be Hamiltonian.

Among the most fundamental criteria that guarantee a graph to be Hamiltonian 
are degree conditions. We discuss a few of these next.

To make the explanations a bit smother, we will adopt the following 
conventions.  Let P be a v-u path in a graph G. For any vertex x of P, with 
x ≠ v, let x− denote the vertex of P that precedes x, and similarly if x ≠ u, let x+

denote the vertex of P that follows x in P. We will adopt the same conventions 
for a cycle that is traversed in a prescribed direction (either clockwise or 
counter-clockwise).

Theorem (Bondy and Chvátal). Suppose that G is a graph and v and u are non-
adjacent vertices of G such that deg(v) + deg(u) ≥ n. Then G is Hamiltonian iff G + 
vu  is Hamiltonian.

Proof. Let e = vu. Certainly if G is Hamiltonian, then G + e is Hamiltonian. So 
now suppose that G + e is Hamiltonian but G is not Hamiltonian. In this case, any 
Hamiltonian cycle C in G +e must contain the edge e, and hence C - e is a v-u path 
in G. So let P be such a spanning v-u path in G. Suppose that deg(v) = k.

Now we claim that for each x ∈N(v) , x− ∉N(u) .

 For suppose that there is some such vertex x. Then we may follow P from v to x− , 
then take the edge x−u , then follow P in reverse from u to x, then take the edge xv 
and we have a Hamiltonian cycle in G contrary to our assumption that G is not 
Hamiltonian. Thus we have established our claim.

So now it must be that deg(u) ≤ (n – 1) – k = n – k – 1, and so 
deg(v) + deg(u) ≤ k + n – k – 1 = n – 1, contrary to our initial assumptions and so 
the result follows.



For any graph G on n vertices, we define the Hamiltonian closure of G (or in 
this context, just the closure of G) to be the graph obtained by recursively 
joining by an edge any two non-adjacent vertices v and u that satisfy the 
condition that deg(v) + deg (u) ≥  n. It is not difficult to show that the closure 
of a graph is unique.

The next result is an immediate consequence of our previous Theorem.

Corollary. If the Hamiltonian closure of a graph is Hamiltonian, then G is 
Hamiltonian.

Corollary (Ore). If G is a graph on n ≥ 3 vertices and for every two non-
adjacent vertices v and u, deg(v) + deg(u) ≥ n, then G is Hamiltonian.

Corollary. If G is a graph on n ≥ 3 vertices and for every vertex v deg(v) ≥ n
2

, 

then G is Hamiltonian.

Here is a much different kind of condition due to Erdös and Chvátal.

Theorem. Let G be a graph on n ≥ 3 vertices such that 2 ≤ β(G) ≤κ (G) = k . 

Then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian (and we hope to arrive at a 
contradiction). Choose a longest cycle C in G (how do you know G has a cycle 
as all?). Then since C cannot contain be a Hamiltonian cycle for G, there is 
some vertex v not on C. Since G is k-connected, then by the Fan Lemma there 
exist k internally disjoint paths P1, P2 , …, Pk from v terminating in C and we 

may assume that no interior vertex of any Pi belongs to C.

For each 1 ≤ i ≤ k, let xi be the terminal vertex of Pi . We first note that for each 

1 ≤  i < k, xi  is not adjacent to xi+1  as otherwise we would easily get a longer 

cycle than C by appending the paths Pi , Pi+1  and removing the edge xixi+1.  

Let S = {x1
− , x2

− , x3
− , …, xk

− , v} . Then since S has cardinality greater than 

β(G) , it follows that S cannot be an independent set in G.

But if v is adjacent to xi
− , then follow v along Pi  to xi  then follow C from xi



to xi
−  clockwise along C, and then take the edge xi

−v and we have produced a 

Hamiltonian cycle in G.

So it must be that for some i ≠ j, xi
−  is adajcent to x j

− .  But then we get a 

Hamiltonian cycle by starting at v, taking the path Pi  to xi , then traversing C 

in a clockwise fashion to x j
− , then taking the edge x j

−xi
− , then following C in 

a counter-clockwise direction from xi
−  to x j , and finally following Pj in 

reverse to v. Thus the theorem follows.

Next we turn our attention to Hamiltonian cycles in planar graphs.

There is a very famous conjecture due to the mathematician Tait that asserts 
that every cubic, 3-connected, planar graph must be Hamiltonian. This result, if 
true, would be remarkable because – as Tait demonstrated – the Four Color 
Theorem would follow from it.

Conjecture (Tait). Every 3-connected, planar graph is Hamiltonian.

It turns out, unfortunately, that this conjecture is false. But it is quite difficult to 
find a counter-example. The first counter-example was provided by Tutte (from 
the University of Waterloo) and his proof that it was a counter-example was 
complex. His counterexample appears below – it is called the Tutte Graph.

                                     

We will soon see why this graph is not Hamiltonian via a simpler (but still non-
trivial) argument than that used by Tutte. For now, you should convince 
yourself that the graph is 3-connected and planar.



A much simpler example along with a very powerful non-Hamiltonian 
condition was later supplied by the Russian mathematician Grinberg. We will 
state his result after first defining a few terms.

Suppose G is a plane graph that has a Hamiltonian cycle C. We refer to a 
region K as being outside C if it is possible to join a vertex inside K to a point 
in the exterior region by an unbroken curve that does not meet C. 

A diagonal (aka chord) of a cycle is an edge that joins two non-consecutive 
vertices of the cycle.

Theorem (Grinberg). Let G be a plane graph on n vertices that has a 
Hamiltonian cycle C. Let fi  denote the number of i-regions inside C and fi '  the 

number of i-regions outside C, and let Δfi = fi − fi ' . Then (i − 2)Δfi
i=3

n

∑ = 0 .

Proof. Let d denote the number of diagonals inside C. Then there are d + 1 

regions inside C. So, 
  

fi
i= 3

n

∑ = d +1 . 

Also, letting I denote the set of inside regions of G,  ifi
i=3

n

∑  =  ∂(R)
R∈I

n

∑ = n + 2d . 

Hence, 
  
(i − 2) fi

i= 3

n

∑ = n − 2.  Similarly, 
  
(i − 2) f ' i

i= 3

n

∑ = n − 2. 

And so, 
  
(i − 2) fi − fi '( )

i= 3

n

∑ = 0 .

Grinberg’s Theorem gives a necessary condition for a graph to be planar. You 
will typically use it to show that a graph is not planar or to infer some properties 
of a known Hamiltonian cycle in the graph.


