
An Introduction to Bipartite Graphs 
 
If  P is a path from the vertex v to the vertex u, we refer to P as a v-u path (or often just a vu-
path). If P is a v-u path, say v = v
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= u , then we refer to vivi+1…v

j  (for any 
0 ! i < j ! m ) as the v

i
- vj subpath of P. A shortest v-u path is called a v-u geodesic.  

 
Note that if the path P:v = v

0
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= u is a v-u geodesic, then for every 0 ! i ! m , 

d(v,v
i
) = i, and in particular the length of a v-u geodesic is d(v,u), the distance from v to u. 

Also, for any such v-u geodesic, d(v
i
,u) = m ! i . Thus if x is any vertex on P, the v-x subpath 

of P is a shortest  v-x path, and the x-u subpath of P is a shortest x-u path. Thus x = vj where 
d(v, x) = j . 
 
A set S of vertices of a graph G is said to be independent if no two vertices of S are adjacent. 
Also, we refer to the subgraph induced by S as an independent subgraph. Similarly, S is said 
to be complete if every two vertices of S are adjacent, and we refer to the subgraph induced 
by S as a complete subgraph. 
 
Definition. A graph G is bipartite if it is the trivial graph or if its vertex set can be partitioned 
into two independent, non-empty sets A and B.  
We refer to A,B{ } as a bipartiton of V (G).  
Note: Some people require a bipartite graph to be non-trivial. 
 
Examples include any even cycle, any tree, and the graph below. 
 

 
 
 
A Few Observations 
(i). No odd cycle is bipartite. 
(ii). Trees are bipartite. 
(iii). If G is bipartite, then so is every subgraph of G. 
(iv). If G is bipartite, then it is possible to assign colors red and blue to the vertices of G in 
such a way, that no two vertices of the same color are adjacent. 
(v). G is bipartite if and only if each of its components is bipartite. 
 



Theorem. A graph G is bipartite if and only if it has no odd cycles. 
Proof. First, suppose that G is bipartite. Then since every subgraph of G is also bipartite, and 
since odd cycles are not bipartite, G cannot contain an odd cycle. That’s the easy direction.  
 
Now suppose that G is a non-trivial graph that has no odd cycles. We must show that G is 
bipartite. So we must determine a partition of the vertices of G into independent sets. 
It is enough to prove our result for connected graphs since if G is bipartite, so is every 
component of G (and vice versa). 
 
So, now consider any vertex a of G. Let A = {v :d(v,a) is even}.  Similarly, define, 
B = v :d(v,a) is odd{ }.  Clearly then 

 
V (G) = A !! B . We will be finished if we can show that 

A and B are independent sets. 
 
So we assume that A is not independent and show that this leads to a contradiction. 
Suppose that x and y are adjacent vertices of A. We may assume that for some integers k, m 
that d(a, x) = 2k,!and d(a, y) = 2m.  
 
Now let P be a shortest a-x path, and Q a shortest a-y path. 
Say P is a = v
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= x  and Q is a = u
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We might notice here that y cannot be on P and x cannot be on Q . (Be sure that you can 
explain why this is true.) 
 
Let w be the vertex in V (P)!V (Q} that is closest to x. 
 
So, w = v

j
= u

j  where d(a,w) = j . So now consider !P , the w-x subpath of P, and !Q , the 
w-y subpath of Q.  Then V ( !P )"V ( !Q ) = {w}.  
 
But then the cycle formed by following !P from w to x, then the edge xy, and then following 
!Q  in reverse from y to w is an odd cycle; more precisely, the cycle 

w = vjvj+1vj+2…v
2k!1xyu2m!1

u
2m!2

…w  has length 2k ! j( )+)(2m ! j) +1 = 2(k + m ! j) +1 , 
which is odd. 
 
But this contradicts the assumption that G has no odd cycles. Thus it must be that A is 
independent. A similar argument shows that B is independent. 
So our result is proven. 


