Page 291 – 293 Hints and Solutions

Recall that

*If *E* is a finite extension of *F* and *K* is a finite extension of *E*, then [K:F] = [K:E][E:F].

- 23. Hint: Use (*) above and the fact that $F \subseteq F(\alpha) \subseteq E$.
- 24. Solution: It is enough to show that $x^2 2$ has no zeros in $\mathbb{Q}(\sqrt[3]{2})$. For this it is enough to show that $\sqrt{2} \notin \mathbb{Q}(\sqrt[3]{2})$. However, if $\sqrt{2} \in \mathbb{Q}(\sqrt[3]{2})$, then $2 = \deg(\sqrt{2}, \mathbb{Q})$ would divide $3 = \deg(\sqrt[3]{2}, \mathbb{Q})$.
- 26. **Hint**: Let $\alpha \in D$, $\alpha \neq 0$. It is enough to show that $\alpha^{-1} \in D$. Since *E* is a finite extension of *F*, *E* is algebraic over *F* and so since $\alpha \in E$, $F(\alpha) = \{a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n : a_i \in F\}$, where $n = \deg(\alpha, F)\}$.
- 29. Hint: Suppose that $\alpha \in E$ is a zero of p(x). Then $\deg(p(x)) = [F(\alpha):F]$ now use (*).
- 30. **Hint**: Since $F(\alpha)$ is a finite extension of *F*, it is an algebraic extension and so $\alpha^2 \in F(\alpha)$ must be algebraic over *F*. Suppose that $F(\alpha^2) \neq F(\alpha)$ and consider the value of $[F(\alpha): F(\alpha^2)]$.
- 31. You may use 31.11 in your text for this.