Math 546 Problem Set 18

1. Prove: If G is Abelian, then every subgroup of G is normal.

Solution: We noted this in class today. Proof. If H is a subgroup of the Abelian group G and $g \in G$, $h \in H$, then $ghg^{-1} = hgg^{-1} = he = h \in H$.

2. Prove: If *H* is a subgroup of *G*, then for any *g* in *G*, gHg^{-1} is also a subgroup of *G*.

Solution: Note that $gHg^{-1} = \{ghg^{-1} : h \in H\}$ Clearly the identity is $e = geg^{-1} \in gHg^{-1}$. If x and y belong to gHg^{-1} , then $x = gh_1g^{-1}$, $y = gh_2g^{-1}$ for some elements $h_1, h_2 \in H$. Thus, $xy = gh_1g^{-1}gh_2g^{-1} = gh_1h_2g^{-1} \in gHg^{-1}$. So gHg^{-1} is closed. Finally if $x = ghg^{-1} \in H$, then $x^{-1} = (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in H$ (since $h^{-1} \in H$).

- 3. Prove the theorem below.
 Theorem. Let G be a group and H a subgroup of G. Then the following are equivalent:

 (i). H ⊲ G.
 (ii). For every g in G, gH = Hg.
 (iii). For every g in G, gHg⁻¹ = H.

 Solution: (i) ⇒ (ii). Suppose that H ⊲ G and let x be any element of gH. Then x = gh for some h in H. Thus, h₁ = ghg⁻¹ ∈ H. And so, x = gh = ghg⁻¹g = h₁g ∈ Hg. Thus we have shown that gH ⊆ Hg, Essentially the same argument shows that Hg ⊆ gH and hence gH = Hg. Now show (ii) implies (iii) and (iii) implies (i).
- 4. (a). If *H* is a subgroup of the group *G* and [G:H] = 2, then $H \triangleleft G$. **Hint**: Consider problem 3(ii).

Solution: Suppose that g is any element of G. If g is in H, then gH = H = Hg. If g does not belong to H, then gH is the left coset that is different from H and Hg is the right coset that is different from H and so gH = Hg.

(b). Show that $A_4 \triangleleft S_4$.

- 5. A₄ has exactly one subgroup of order 4, namely K = {i, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(1, 3)}. Show that K is a normal subgroup of A₄. Hint: Refer to problems 2 & 3. Solution: Since K is the only subgroup of order 4 and since gKg⁻¹ is a subgroup of order 4, then gKg⁻¹ = K and so K is normal by problem 3.
- 6. Recall that $SL(2,R) = \{A \in GL(2,R) : \det(A) = 1\}$. Show that $SL(2,R) \triangleleft GL(2,R)$. **Hint**: If *A* and *B* are both $n \times n$ matrices, then $\det(AB) = \det(A)\det(B)$.