1. **Prove:** If A, B and C are sets and $f : A \to B$, $g : B \to C$ are both onto, then so is $g \circ f : A \to C$.

Solution:
In order to show that f is onto, we must show that for every element c of C, $g \circ f (a) = c$ for some a in A.

However, since g is onto, there is some b in B such that $g(b) = c$ and since f is onto, there is some a in A such that $f(a) = b$. Hence, $g \circ f (a) = g(f(a)) = g(b) = c$.

2. **Prove:** If A, B and C are sets and $f : A \to B$, $g : B \to C$ are both 1-1, then so is $g \circ f : A \to C$.

Solution:
Suppose that x and y are different elements of A. we need to show that $g \circ f (x) \neq g \circ f (y)$.

However, since f is 1-1, $x \neq y \Rightarrow f(x) \neq f(y)$.

And then since g is 1-1, $f(x) \neq f(y) \Rightarrow g(f(x)) \neq g(f(y)) \Leftrightarrow g \circ f (x) \neq g \circ f (y)$.

3. **Suppose that A is a non-empty set and F_A is the set of all functions from A to A.**
 (a) If $|A| = n$, then how many elements are there in F_A?

 (b) Convince yourself that each of the following subsets of F_A is a subsemigroup under the composition of functions.

 (i). The set of onto functions from A to A.

 (ii). The set of 1-1 functions from A to A

 (iii). The set of bijective functions from A to A.

 Solution: By problem (1) with B and C both replaced by A, the set of onto functions from A to A is closed under composition. So, since we know that F_A is a semigroup, the set of onto functions is also a semigroup.

4. Show that if A is a finite non-empty set, then for any function $f : A \to A$,
 (a) If f is onto, then f is also 1-1.

 Solution:
 Assume that A is a finite non-empty set, and that $f : A \to A$ is onto.
 Suppose that f is not 1-1. Then there exists $a, b \in A$ such that $a \neq b$, but $f(a) = f(b)$.
 Now let $B = A - \{a\}$. Then the function $f_1 : B \to A$ defined by $f_1(x) = f(x)$ for
all \(x \) in \(B \) is also onto \(A \). But this means that \(| A | \leq | B |\) which is impossible since \(B \) is a smaller set than \(A \).

(b). If \(f \) is 1-1, then \(f \) is also onto.

Solution:
Suppose that \(f \) is 1-1, but not onto. Then since \(f \) is not onto, there is some element \(a \) in \(A \) such that \(f(x) \neq a \) for every element \(x \) of \(A \).
But now let \(B = A - \{a\} \). Then the function \(f_1 : A \rightarrow B \) defined by \(f_1(x) = f(x) \)
for all \(x \) in \(A \) is 1-1. But this means that \(| A | \leq | B |\) which is impossible since \(B \) is a smaller set than \(A \).

(c). Show that neither of (a) nor (b) is true if \(A \) is infinite.

Solution:
To see that (b) need not be true when \(A \) is infinite, choose \(A = \mathbb{Z}^+ \), and let \(f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) be defined by \(f(n) = n + 1 \). Then clearly \(f \) is 1-1, but it is not onto (why?)

For part (a), can you find an example of a function \(f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) that is onto but not 1-1?

5. Let \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \) and define \(f:A \rightarrow P(A) \) by the following assignments:

\[
\begin{align*}
1 & \rightarrow \{2, 3, 4\}, \quad 2 \rightarrow \{1, 2, 3\}, \quad 3 \rightarrow \{1, 6, 9\} \quad 4 \rightarrow \emptyset \\
5 & \rightarrow \{5\}, \quad 6 \rightarrow \{2, 6, 9\}, \quad 7 \rightarrow \{2, 8\} \quad 8 \rightarrow \{1, 9\}
\end{align*}
\]

Then determine the set \(M \) in the proof of Cantor’s Theorem as applied to \(A \).

6. Suppose that \((S, *)\) is a binary system and suppose that for any \(a \) and \(b \) in \(S \), \(a * (b * a) = b \).
Show that for any \(a \) and \(b \) in \(S \), \((a * b) * a = b \). (This is harder than the others.)

7. Let \(A = \{a, b, c\} \). There are six bijections from \(A \) to \(A \).
Note: bijections on a finite set are also often called permutations.
Let’s give these functions some names: \(i, x, y, z, r \) and \(s \) defined as follows:

\[
\begin{align*}
i(a) & = a, \quad i(b) = b, \quad i(c) = c \\
x(a) & = a, \quad x(b) = c, \quad x(c) = b \\
y(a) & = b, \quad y(b) = a, \quad y(c) = c \\
z(a) & = c, \quad z(b) = b, \quad z(c) = a \\
r(a) & = b, \quad r(b) = c, \quad r(c) = a
\end{align*}
\]
\[s(a) = c, \ s(b) = a, \ s(c) = b \]

Complete the following ‘multiplication table’ for the semigroup of these bijections under composition.

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>s</td>
<td>z</td>
<td>y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>r</td>
<td>i</td>
<td>s</td>
<td>x</td>
<td>z</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>r</td>
<td>y</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>s</td>
<td>i</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>x</td>
<td>i</td>
<td>r</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>z</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>r</td>
<td>i</td>
<td>s</td>
<td>x</td>
<td>z</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>s</td>
<td>r</td>
<td>i</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>s</td>
<td>i</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>i</td>
<td>r</td>
</tr>
</tbody>
</table>

Solution: