1. (a). The power set of \{a, b, c\} is
Solution: \{\emptyset, \{a\}, \{b\}, \{a, b\}\}

(b). Verify that the set \(E\) of even integers is a countable set.
(No need to verify that a function is 1-1 or onto here – I’ll trust you on this one.)
Solution: Define \(f: \mathbb{Z}^+ \rightarrow E\) by
\[f(n) = \begin{cases} n & \text{n is even} \\ -n + 1 & \text{n is odd} \end{cases} \]
(There are other possibilities as well.)

2. (a). Explain why the table below cannot be completed to that of a semigroup.
\[
| & a & b & c & d & e & f \\
- a & b \\
- b & c \\
- c & d \\
- d & e \\
- e & f \\
- f & a \\
\]

Solution: No matter how this table is extended, the resulting binary structure will not have any idempotents and hence cannot be a semigroup.

(b). The table below is that of a partially filled semigroup.
What is the value of \(a \ast b\)?

\[
| & a & b & c & d \\
- a & a & d \\
- b & d \\
- c & b \\
- d & c \\
\]

Solution: \(a \ast b = a \ast (c \ast d) = (a \ast c) \ast d = d \ast d = c\)

(c). The table below is the partially filled table for a commutative group on 5 elements. Fill in the missing portions of the table.

\[
| & a & b & c & d & f \\
- a & a \\
- b & d & f \\
- c & \ \\
- d & \ \\
- f & \ \\
\]

\[
| & a & b & c & d & f \\
- a & a & b & c & d & f \\
- b & b & d & a & f & c \\
- c & c & a & f & b & d \\
- d & d & f & b & c & a \\
- f & f & c & d & a & b \\
\]
3. Let \(f : R \rightarrow R^* \) be defined by \(f(x) = e^x \), give the definition of an operation \(* \) on \(R \) so that \(f \) will be an isomorphism from \((R,*)\) to \((R^*,+)\).

What is the value of \(0 * 0 \)?

Solution: Let \(a, b \in R \). Then \(f(a * b) = f(a) + f(b) \iff e^{a+b} = e^a + e^b \).

Hence, \(a * b = \ln(e^a + e^b) \). Thus \(0 * 0 = \ln 2 \).

4. (a). Verify that \((Z,\ast)\) where \(a \ast b = a + b - 2 \) for all integers \(a \) and \(b \) is a group.

What is the identity element for this group and what is the inverse of 7?

Solution: First we show that \(\ast \) is associative. For suppose that \(a,b,c \in R \). Then
\[
(a \ast (b \ast c)) = a \ast ((b + c - 2) = a + (b + c - 2) - 2 = a + b + c - 4
\]
\[
(\ast (a \ast b) \ast c) = (a + b - 2) \ast c = a + b - 2 + c - 2 = a + b + c - 4
\]
Hence, \(a \ast (b \ast c) = (a \ast b) \ast c \).

The integer 2 is an identity since for any integer \(a \),
\[
a \ast 2 = a + 2 - 2 = a
\]
Each integer \(a \) has an inverse \(a' = 4 - a \) since
\[
a \ast (4 - a) = a + (4 - a) - 2 = 2
\]
In particular, the inverse of 7 is \(-3\).

(b). The binary structure \((R^* - \{1\},\circ)\) where \(x \circ y = x^{\ln y} \) for all \(x, y \) in \(R \), is a group (you do not need to verify this). What is the inverse of the number \(e^2 \)?

Solution: It is easy to see that the identity for this operation is the number \(e \).
For if \(a \) is any real number then \(a \circ e = a^{\ln e} = a^1 = a \) and \(e \circ a = e^{\ln a} = a \).
If \(x \) denotes the inverse of \(e^2 \), then \(e = x \circ e^2 = x^{\ln e^2} = x^2 \Rightarrow x = \sqrt{e} \).

5. Show that \(r = \sqrt{1 + \sqrt{2}} \) is not a rational number. You may use the fact that \(\sqrt{2} \) is not a rational number to determine a contradiction. You may also use the fact that the rational numbers are closed under addition and multiplication.

Hint: Begin with suppose that \(r = \sqrt{1 + \sqrt{2}} \) is a rational number, then

Proof. Suppose that \(\sqrt{1 + \sqrt{2}} \) is rational. Then \(\sqrt{1 + \sqrt{2}} = \frac{a}{b} \) for some integers \(a \) and \(b \). But then \(1 + \sqrt{2} = \frac{a^2}{b^2} \Rightarrow \sqrt{2} = \frac{a^2 - b^2}{b^2} \in Q \) which is impossible since \(\sqrt{2} \) is irrational.
6. Fill in the requested details of the argument below.

Theorem. Let \(n \) and \(m \) be positive integers, and \(d = \gcd(n,m) \).
Then \(d \) is the smallest positive element of the set \(A = \{ an + bm : a, b \in \mathbb{Z} \} \).

Proof. We first note that \(A \) does contain some positive values since \(n \) must belong to \(A \) because \(\text{________} \).

Now we let \(d \) denote the least positive integer in \(A \). What is it that justifies the existence of \(d \)? The **Well-Ordering Principle**
Hence there exist integers \(a \) and \(b \) such that \(d = an + bm \).
We claim that \(d \) divides \(n \). If it did not then we could find integers \(q \) and \(r \) with
\[
 n = qd + r \text{ where } 0 < r < d \text{ (fill in the blank with appropriate bounds on } r.)
\]
But then we get that \(r = n - dq = n - q(an + bm) = (1 - qa)n + qbm \)
but this is a contradiction because this would imply that \(r \) belongs to \(A \) and yet \(r \) is a positive integer that is smaller than \(d \) – contrary to the choice of \(d \).
Thus \(d \) divides \(n \) and similarly \(d \) divides \(m \).

Now suppose that \(k \) is any other divisor of both \(n \) and \(m \), then \(n = kr, m = ks \) for some integers \(r \) and \(s \). And so now \(d = an + bm = \text{________} \)and so (explain how you know that \(k \) must be smaller than \(d \)).

this implies that \(k \) divides \(d \) and so \(k \leq d \).

Make sure that in the details above you have indicated clearly where it is that you used the fact that \(d \) was the smallest positive element of \(A \).

7. (a). How many commutative operations are there on a set with 5 elements?
 Explain your answer.

Solution: Look at the table for the operation. It has 25 entries. But once we have set the values in the upper 10 squares and the 5 diagonal squares, the remaining values are determined by commutativity. Thus there are just 15 squares to fill and we may use any of 5 values in each of these squares. Thus there are \(5^{15} \) commutative operations.

(b). How many equivalence relations are there on the set \(S = \{ a, b, c \} \).
 Explain your answer.

Solution:
There is one equivalence relation for every way to partition \(S \) into non-empty sets. There are five partitions of \(S \) and hence there are five equivalence relations on \(S \).
8. Let \((G, \ast)\) be a group and \(b\) a fixed element of \(G\).
Define \(f: G \rightarrow G\) by \(f(x) = b \ast x\) for every \(x\) in \(G\).
Show that \(f\) is onto.

Solution:
To show that \(f\) is onto we must show that every element of \(G\) is a functional value.
So, let \(y\) be any element of \(G\). Let \(x = b' \ast y\). Then,
\[f(x) = b \ast x = b \ast (b' \ast y) = (b \ast b') \ast y = e \ast y = y\] (where \(e\) denotes the identity element).