Lecture 08

13.1/13.2/13.3: Smooth curves, integrals, arc
length

Jeremiah Southwick

February 4, 2019



Things to note

Exam 1 is on Monday, February 11 (1 week).
Quiz 04 will be on Wednesday, February 6 (next class).
Friday, February 8 will be a review day with no quiz.

MTW office hours canceled.



Quiz 03 Key ideas

1. Intersection (a geometric idea) means substitution algebraically.

2(1+t)—(—2+5t)+3(3—2t) =40

2. A plane being perpendicular to a line means the plane’s normal
vector is parallel to the direction vector of the line.

A= (-2,3, 1)



Last class

Definition
A vector-valued function is a function

where f, g, and h are real-valued functions.

Definition
Let ¥(t) = (f(t),g(t), h(t)). ¥ is differentiable at t = ty if f,g and
h are differentiable at ty. In this case,

dfr /df dg dh
Ft)=—={(—,—(—,— )
r() dt <dt’dt’dt>

(t) = % and a(t)

_dv _ d%
dt dt?’



Smooth vector functions

If Z—f is never 0, then the space curve has a well-defined direction

at all points of the curve. Vector-valued functions with this
property are smooth.
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Definition
A vector-valued function ¥(t) is smooth on the domain D if

¥
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2. g—t? is never 0 on D.

We simply say ¥(t) is smooth if ¥(t) is smooth on R.
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Definition
A vector-valued function ¥(t) is smooth on the domain D if
1. 9% s continuous on D, and
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2. g—t? is never 0 on D.
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Example
Show that the helix ¥(t) = (cos(t),sin(t), t) is smooth.



Smooth vector functions

If Z—f is never 0, then the space curve has a well-defined direction

at all points of the curve. Vector-valued functions with this
property are smooth.

Definition
A vector-valued function ¥(t) is smooth on the domain D if
1. 9% s continuous on D, and

©odt
2. g—f is never 0 on D.
We simply say ¥(t) is smooth if ¥(t) is smooth on R.

Example
Show that the helix ¥(t) = (cos(t),sin(t), t) is smooth.

We have Z—f = (—sin(t),cos(t),1). Since the z-direction of Z—t? is
always 1, Z—f is never the zero vector for any value of t. Thus r(t)

is smooth.



Vector Functions of Constant Length

If a vector-valued function always has the same length, then it has
the property that r- % = 0. We can prove this algebraically.



Vector Functions of Constant Length

If a vector-valued function always has the same length, then it has
the property that r- Z—tF = 0. We can prove this algebraically.

If ¥(t) has constant length, then we have ¥(t) - ¥(t) = c? for some
length c. This means

d

d d¥ dF P
dt o

[F(t) : F(t)] = 0= ZHe) +H(t) = 0= 2Ht) 22 =0

which gives the desired result.
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We can integrate vector functions componentwise just as we
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13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we
differentiated them in the previous section.

Definition .
Let ¥(t) be a vector function with R(t) an anti-derivative for ¥(t).

Then
/F(t)dt — R(t)+ €

for some constant vector C.
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We can integrate vector functions componentwise just as we
differentiated them in the previous section.

Definition .
Let ¥(t) be a vector function with R(t) an anti-derivative for ¥(t).
Then

for some constant vector C.

Example
Let ¥(t) = (cos(t),sin(t), t). Find [ ¥(t)dt.



13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we
differentiated them in the previous section.

Definition .
Let ¥(t) be a vector function with R(t) an anti-derivative for ¥(t).
Then

for some constant vector C.
Example
Let ¥(t) = (cos(t),sin(t), t). Find [ ¥(t)dt.

The integral is (sin(t), — cos(t), t2—2> + {(c1, &2, c3) where the ¢; are
constant real numbers.



Definite Integrals

Definition
If the components of ¥(t) = (f(t), g(t), h(t)) are integrable over
the interval [a, b], then so is ¥, and

/abF(t)dt -/ " F(e)de, / gt / ’ e
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function.
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Definite Integrals

Definition
If the components of ¥(t) = (f(t), g(t), h(t)) are integrable over
the interval [a, b], then so is ¥, and

/abF(t)dt -/ " F(e)de, / gt / ’ e

Notice that a definite integral gives us a vector in 3D, not a
function.

Example
Find [T (cos(t)i +j — 2tk)dt.

<: [sin(t)>]g?+ [t]35 + [t2]5k = (0 — 0)i + (7 — O)k + [72 — O]k =
0, m, m2).
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Recall that the arc length of a parametrized curve x = f(t),
y = g(t) from t = a to t = b is given by the formula

L= /ab,/ff(t)2+g'(t)2.



13.3 Arc length in space

Recall that the arc length of a parametrized curve x = f(t),
y = g(t) from t = a to t = b is given by the formula

L= /ab,/ff(t)2+g'(t)2.

Definition _ . _
Let ¥(t) = f(t)i+ g(t)j + h(t)k be smooth and let a < t < b.
Then the length of ¥ fromt =atot=0b s

[ () (5w




Example
Find the length of the helix ¥(t) = (cos(t),sin(t),t) from t =0 to
t =2m.
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Example
Find the length of the helix ¥(t) = (cos(t),sin(t),t) from t =0 to
t =2m.

_11
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The length is

= /027r V(= sin(£))2 + (cos(1))? + 124t = T 1de

0

t=2m

= ﬂt] = 2V/27.

t=0



