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Abstract

We determine several variants of the classical interpolation formula for finite fields which produce
polynomials that induce a desirable mapping on the non-specified elements, and without increasing the
number of terms in the formula. As a corollary, we classify those permutation polynomials over a finite
field which are their own compositional inverse, extending work of C. Wells.

§ 1. Introduction

The idea of polynomial interpolation has been known now for several centuries. The classical Lagrangian
form is as follows: Given some field F , and some partial function φ on F – i.e. a function defined on
a subset A = {a0, a2, . . . , an} of F satisfying φ(ai) = bi ∈ F for 0 ≤ i ≤ n – the unique polynomial
f ∈ F [X] of degree at most n which satisfies f(ai) = bi is given by

f(X) =

n∑
i=0

bi
∏
a∈A
a6=ai

(
X − a
ai − a

)
. (1)

While the Lagrange Interpolation Formula has many practical uses, a modern instance being in secret-
sharing schemes for example, when used in a discrete setting, the resulting polynomial may not necessarily
be the most useful. For example, in discrete settings it is often desirable to have more control over the
behaviour of the polynomial f on F \A, and the behaviour of the polynomial f(X) in (1) is unpredictable
on F \A.

In this note we are interested in looking at several alternative versions of polynomial interpolation in the
discrete setting which produce polynomials that induce a desirable mapping on the non-specified elements,
and this without increasing the number of terms in the formula. For various reasons, we restrict ourselves to
the case where F is a finite field. Specifically, we are interested in versions of interpolation for representing
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partial functions φ which permute a specified subset A of F . A previous study of representing partial
functions in the discrete setting and without the permutation requirement can be found in Wesselkamper
[5], though Wesselkamper’s results stem from a different motivation. Depending on the situation, there
are a variety of ways of extending the partial function to the whole of F . Here we consider two such
circumstances, namely where the polynomial acts on the non-specified elements as either the identity map
or a constant. The former situation yields another generic method for constructing permutation polynomials
over finite fields using interpolation – methods for constructing permutation polynomials over finite fields via
Lagrange interpolation were noted previously by Carlitz [1], Dickson [2], and Zsigmondy [6]. An immediate
corollary of this permutation result is a complete description of all polynomials defined over a finite field
which form their own compositional inverse. We use this corollary to identify one particularly special
permutation polynomial class; those that represent a permutation of the finite field which switches some
nonzero element with its additive inverse and otherwise fixes the field. Our results are given in Section 3.

§ 2. Notation and preliminaries

Throughout q is some prime power. We use Fq to denote a finite field with q elements, F?
q its non-zero

elements, and Fq[X] to be the polynomial ring in indeterminate X over Fq. It is well known that any
function on Fq can be uniquely represented by a reduced polynomial in Fq[X]; that is one of degree at most
q − 1 – in fact, this follows from Lagrange interpolation!

An important polynomial in what follows is the “all ones” polynomial hk(X) = 1 +X+X2 + . . .+Xk,
where k is a non-negative integer. Some results concerning hk(X) have appeared previously in the literature.
Of interest is the work of Matthews [3], who classified the permutation behaviour of these polynomials over
fields of odd characteristic; this problem remains open in even characteristic. We list some useful identities
for hk(X).

Lemma 1. The following statements hold.

(i) For any k, hk(1) = k + 1, and

hk(x) =
xk+1 − 1

x− 1
, if x 6= 1. (2)

(ii) For a ∈ F?
q , (X − a)q−1 = Xq−1 + hq−2(a−1X).

(iii) For a, x ∈ Fq, we have

hq−2(aq−2x) =


1 if ax = 0,

0 if ax 6= 0 and x 6= a,

−1 if x = a 6= 0.

Proof. Part (i) is immediate, while (ii) follows from the Binomial Theorem and the easily proved observation
that

(
q−1
i

)
≡ (−1)i mod p.

For (iii), if either a or x is zero, then hk(0) = 1 is clear for any non-negative k. For the remainder
of the proof we assume ax 6= 0. If x = a, then aq−2x = aq−1 = 1, and we can appeal to (i) to obtain
hq−2(aq−2x) = q − 1 = −1, as claimed. Now suppose x 6= a, so that aq−2x 6= 1. Then appealing to (2)
we find

hq−2(aq−2x) =
(a−1x)q−1 − 1

a−1x− 1

=
1− 1

a−1x− 1

= 0,

completing the proof.

Note that the last statement of the lemma shows how hq−2(X) can be used as a form of indicator
function. It is in this capacity that we utilise hq−2(X) below.
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§ 3. Polynomials representing partial functions

We first consider polynomial interpolation for a permutation of Fq (we use cycle notation to represent the
permutation).

Theorem 2. Let α be the permutation of Fq represented as the product of disjoint cycles as

α = (a00, a01, . . . , a0n0)(a10, a11, . . . , a1n1) . . . (ak0, ak1, . . . , aknk
).

Then α is represented by the reduced polynomial

T (X) = X +

k∑
i=0

ni∑
j=0

aq−1
ij hq−2(aq−2

ij X)(aij − ai(j+1)),

where the subscript j in aij is read modulo ni + 1.

Proof. We split the proof into two cases, depending on whether α fixes 0. Since the degree of T is clearly
at most q − 1, in either case, we need only prove T induces the mapping α under evaluation.
Case 1: α fixes 0.
Then aij 6= 0 for all i, j. Consequently, aq−1

ij = 1 and the value of hq−2(aq−2
ij x) is described by Lemma 1.

Evaluating T (x) at x = 0 gives

T (0) = 0 +

k∑
i=0

ni∑
j=0

hq−2(0)(aij − ai(j+1)).

By Lemma 1, hq−2(0) = 1, so

T (0) =

k∑
i=0

ni∑
j=0

(aij − ai(j+1))

= (a00 − a01 + a01 − a02 + · · ·+ a0(n0−1) − a0n0
+ a0n0

− a00)

+ . . .+ (ak0 − ak1 + ak1 − ak2 + · · ·+ aknk
− ak0)

= 0,

as desired.
Now let a be any element of F?

q fixed by α. Evaluating T (x) at x = a gives

T (a) = a+

k∑
i=0

ni∑
j=0

hq−2(aq−2
ij a)(aij − ai(j+1)).

Since a is fixed by α, a 6= aij for all i, j. Combining this with a 6= 0, by Lemma 1 we have that

hq−2(aq−2
ij a) = 0 for all i, j, so that T (a) = a.

Now let a ∈ α. Then a = ast for some s, t. Evaluating T (x) at x = a gives

T (a) = a+

k∑
i=0

ni∑
j=0

hq−2(aq−2
ij a)(aij − ai(j+1)).

Now a 6= 0 by the assumption of this case. By Lemma 1, hq−2(aq−2
ij a) = 0 for all (i, j) 6= (s, t) and

hq−2(aq−2
st a) = −1. Thus

T (a) = a+ (−1)(ast − as(t+1))

= ast + (−1)(ast − as(t+1))

= as(t+1),
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so the polynomial T maps every element of Fq as prescribed by α.
Case 2: α does not fix 0.
Without loss of generality, let a00 = 0. Then aq−1

00 = 0q−1 = 0 while aq−1
ij = 1 for aij 6= a00. We have

T (X) = X +

n0∑
j=1

aq−1
0j hq−2(a0jX)(a0j − a0(j+1))

+

k∑
i=1

ni∑
j=0

aq−1
ij hq−2(aq−2

ij X)(aij − ai(j+1)).

By Lemma 1, if x = 0, then hq−2(aq−2
ij x) = 1 for all i, j. Evaluating T (x) at x = 0 gives

T (0) = 0 +

n0∑
j=1

(a0j − a0(j+1)) +

k∑
i=1

ni∑
j=0

(aij − ai(j+1))

= (a01 − a02 + a02 − a03 + · · ·+ a0(n0−1) − a0n0 + a0n0 − a00)

+ . . .+ (ak0 − ak1 + ak1 − ak2 + · · ·+ aknk
− ak0)

= a01.

So 0 = a00 maps to a01, as required.
Now let a ∈ F?

q be fixed by α. Evaluating T (x) at x = a gives

T (a) = a+

n0∑
j=1

aq−1
0j hq−2(a0ja)(a0j − a0(j+1))

+

k∑
i=1

ni∑
j=0

aq−1
ij hq−2(aq−2

ij a)(aij − ai(j+1)).

Since a is fixed by α, a 6= aij for all i, j. Again, we combine this with a 6= 0 and find, by Lemma 1, that

hq−2(aq−2
ij a) = 0 provided (i, j) 6= (0, 0). Thus T (a) = a.

Now let a = ast for some s, t, (s, t) 6= (0, 0). Evaluating T (x) at x = a gives

T (a) = a+

n0∑
j=1

aq−1
0j hq−2(a0ja)(a0j − ai(j+1))

+

k∑
i=1

ni∑
j=0

aq−1
ij hq−2(aq−2

ij a)(aij − ai(j+1)).

As a 6= 0, Lemma 1 yields hq−2(aq−2
ij a) = 0 for all i, j, (i, j) 6∈ {(0, 0), (s, t)} and hq−2(aq−2

st a) = −1.
Thus

T (a) = a+ (−1)(ast − as(t+1))

= ast + (−1)(ast − as(t+1))

= as(t+1),

and we have shown the polynomial T maps every element of Fq as prescribed by α.

Note that the number of terms in the double sum is equal to the number of non-fixed points of the
permutation, which is the same as in (1).

As an immediate application of Theorem 2, we classify those permutation polynomials over Fq which
are their own compositional inverse.
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Corollary 3. Let f ∈ Fq[X] satisfy f(f(X)) ≡ X mod (Xq −X). Then

f(X) = X +

k∑
i=0

(ai0 − ai1)(aq−1
i0 hq−2(a−1

i0 X)− aq−1
i1 hq−2(a−1

i1 X)),

where the aij are distinct elements of Fq. In particular, if f(0) = 0 also holds, then

f(X) = X +

k∑
i=0

(ai0 − ai1)(hq−2(a−1
i0 X)− hq−2(a−1

i1 X))

= X +

k∑
i=0

(ai0 − ai1)((X − ai0)q−1 − (X − ai1)q−1).

The result follows immediately from Theorem 2 and the observation that any f ∈ Fq[X] satisfying the
hypothesis must induce an involution α ∈ Sq of the form

α = (a00, a01)(a10, a11) · · · (ak0, ak1),

with aij ∈ Fq distinct. The last observation concerning polynomials with no constant term follows from
Lemma 1(ii).

We note in particular the form for those reduced polynomials representing involutions which fix all
but two elements; these polynomials were previously described by Wells [4], and could in turn be used
to establish Corollary 3. A particularly nice form of permutation polynomial comes from the involution
α = (a,−a).

Corollary 4. Let a ∈ F?
q for q odd and let hk(X) = 1 + X + X2 + · · · + Xk for any natural number k.

The polynomial fa ∈ Fq[X] given by

fa(X) = X + 4Xh q−3
2

(
(a−1X)2

)
is a permutation polynomial over Fq.

Proof. Set α = (a,−a). Appealing to Corollary 3 we find

fa(X) = X + (a− (−a))
(
hq−2(a−1X)− hq−2((−a)−1X)

)
= X + 2a

q−2∑
k=0

(
(a−1)k − (−a)−k

)
Xk

= X + 2a

q−2∑
k=0

(
1− (−1)k

)
(a−1X)k

= X + 2a

q−3
2∑

k=0

2(a−1X)2k+1

= X + 4a(a−1X)

q−3
2∑

k=0

(a−1X)2k

= X + 4Xh q−3
2

(
(a−1X)2

)
.

We now move to our second natural situation, where we extend the partial permutation function so
that it acts as a constant on the non-specified elements.
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Theorem 5. Let c ∈ Fq be fixed, A be some subset of Fq, and α be a permutation on A, represented as
the product of disjoint (possibly trivial) cycles as

(a00, a01, . . . , a0n0
)(a10, a11, . . . , a1n1

) . . . (ak0, ak1, . . . , aknk
).

Then the polynomial

T (X) = c+

k∑
i=0

ni∑
j=0

(ai(j+1) − c)(1− (X − aij)q−1),

with the subscript j in aij read modulo ni + 1, represents the permutation α on A while mapping all
a ∈ Fq \A to c.

Proof. As with the proof of Theorem 3, it suffices to prove the function induced by T on Fq is as claimed.
Let a ∈ Fq \A. Then a 6= aij for all i, j. Consequently,

T (a) = c+

k∑
i=0

ni∑
j=0

(ai(j+1) − c)(1− (a− aij)q−1)

= c+
k∑

i=0

ni∑
j=0

(ai(j+1) − c)(1− 1)

= c,

so every a ∈ Fq \A is mapped to c.
Now let a ∈ A. Then a = ast for some s, t. Here we have

T (a) = c+

k∑
i=0

ni∑
j=0

(ai(j+1) − c)(1− (a− aij)q−1)

= c+ (as(t+1) − c)(1− 0)

= as(t+1),

and we are done.

Versions of the types of functions considered in Theorem 5 can be useful in cryptography when at-
tempting to construct a meet-in-the-middle attack, where one looks to split the encryption function E into
a composition of two functions on at least some subset of the message space, and then use this to restrict
the search space for potential messages. Whether the associated polynomials produced here could also be
useful in such an attack is unclear.
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