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1.1 Introduction

For all terms related to digraphs and not defined below, see Bang-Jensen

and Gutin [1]. In this paper, by a directed graph (or simply digraph) D we

mean a pair (V,A), where V = V (D) is the set of vertices and A = A(D) ⊆
V × V is the set of arcs. For an arc (u, v), the first vertex u is called its

tail and the second vertex v is called its head; we also denote such an arc

by u → v. If (u, v) is an arc, we call v an out-neighbor of u, and u – an

in-neighbor of v. The number of out-neighbors of u is called the out-degree

of u, and the number of in-neighbors of u — the in-degree of u. For an

integer k ≥ 2, a walk W from x1 to xk in D is an alternating sequence

W = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi ∈ V and arcs aj ∈ A such

that the tail of ai is xi and the head of ai is xi+1 for every i, 1 ≤ i ≤ k− 1.

Whenever the labels of the arcs of a walk are not important, we use the

1

kodess@uri.edu
fellaz@udel.edu
smithsj@udel.edu
jsporre@udel.edu


January 8, 2016 12:8 ws-book9x6 Book Title... Diameter˙Monomial˙Digraphs˙January˙08˙2016 page 2

2 Book Title

notation x1 → x2 → · · · → xk for the walk, and say that we have an x1xk-

walk. In a digraph D, a vertex y is reachable from a vertex x if D has a

walk from x to y. In particular, a vertex is reachable from itself. A digraph

D is strongly connected (or, just strong) if, for every pair x, y of distinct

vertices in D, y is reachable from x and x is reachable from y. A strong

component of a digraph D is a maximal induced subdigraph of D that is

strong. If x and y are vertices of a digraph D, then the distance from x

to y in D, denoted dist(x, y), is the minimum length of an xy-walk, if y is

reachable from x, and otherwise dist(x, y) = ∞. The distance from a set

X to a set Y of vertices in D is

dist(X,Y ) = max{dist(x, y) : x ∈ X, y ∈ Y }.
The diameter of D is diam(D) = dist(V, V ).

Let p be a prime, e a positive integer, and q = pe. Let Fq denote the

finite field of q elements, and F∗q = Fq \ {0}.
Let F2

q to denote the Cartesian product Fq × Fq, and let f : F2
q → Fq

be an arbitrary function. We define a digraph D = D(q; f) as follows:

V (D) = F2
q, and there is an arc from a vertex x = (x1, x2) to a vertex

y = (y1, y2) if and only if

x2 + y2 = f(x1, y1).

If x→ y is an arc in D, then y is uniquely determined by x and y1, and

x is uniquely determined by y and x1. Hence, each vertex of D has both

its in-degree and out-degree equal to q.

By Lagrange’s interpolation, f can be uniquely represented by a bi-

variate polynomial of degree at most q − 1 in each of the variables. If

f(x, y) = xmyn, 1 ≤ m,n ≤ q − 1, we call D a monomial digraph, and

denote it also by D(q;m,n). Digraph D(3; 1, 2) is depicted in Fig. 1.1. It is

clear, that x→ y in D(q;m,n) if and only if y → x in D(q;n,m). Hence,

one digraph is obtained from the other by reversing the direction of every

arc. In general, these digraphs are not isomorphic, but if one of them is

strong then so is the other and their diameters are equal. As this paper is

concerned only with the diameter of D(q;m,n), it is sufficient to assume

that 1 ≤ m ≤ n ≤ q − 1.

The digraphs D(q; f) and D(q;m,n) are directed analogues of some al-

gebraically defined graphs, which have been studied extensively and have

many applications. See Lazebnik and Woldar [18] and references therein; for

some subsequent work see Viglione [24], Lazebnik and Mubayi [14], Lazeb-

nik and Viglione [17], Lazebnik and Verstraëte [16], Lazebnik and Thoma-

son [15], Dmytrenko, Lazebnik and Viglione [7], Dmytrenko, Lazebnik and
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Fig. 1.1 The digraph D(3; 1, 2): x2 + y2 = x1y21 .

Williford [8], Ustimenko [23], Viglione [25], Terlep and Williford [22], Kro-

nenthal [13], Cioabă, Lazebnik and Li [3], Kodess [11], and Kodess and

Lazebnik [12].

The questions of strong connectivity of digraphs D(q; f) and D(q;m,n)

and descriptions of their components were completely answered in [12].

Determining the diameter of a component of D(q; f) for an arbitrary prime

power q and an arbitrary f seems to be out of reach, and most of our

results below are concerned with some instances of this problem for strong

monomial digraphs. The following theorems are the main results of this

paper.

Theorem 1.1.1. Let p be a prime, e,m, n be positive integers, q = pe,

1 ≤ m ≤ n ≤ q − 1, and Dq = D(q;m,n). Then the following statements

hold.

(1) If Dq is strong, then diam(Dq) ≥ 3.

(2) If Dq is strong, then

• for e = 2, diam(Dq) ≤ 96
√
n+ 1 + 1;

• for e ≥ 3, diam(Dq) ≤ 60
√
n+ 1 + 1.

(3) If gcd(m, q − 1) = 1 or gcd(n, q − 1) = 1, then diam(Dq) ≤ 4. If

gcd(m, q − 1) = gcd(n, q − 1) = 1, then diam(Dq) = 3.

(4) If p does not divide n, and q > (n2−n+1)2, then diam(D(q; 1, n)) = 3.

(5) If Dq is strong, then:

(a) If q > n2, then diam(Dq) ≤ 49.

(b) If q > (m− 1)4, then diam(Dq) ≤ 13.
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(c) If q > (n− 1)4, then diam(D(q;n, n)) ≤ 9.

Remark 1. The converse to either of the statements in part (3) of The-

orem 1.1.1 is not true. Consider, for instance, D(9; 2, 2) of diameter 4, or

D(29; 7, 12) of diameter 3.

Remark 2. The result of part 5a can hold for some q ≤ m2.

For prime q, some of the results of Theorem 1.1.1 can be strengthened.

Theorem 1.1.2. Let p be a prime, 1 ≤ m ≤ n ≤ p − 1, and Dp =

D(p;m,n). Then Dp is strong and the following statements hold.

(1) diam(Dp) ≤ 2p− 1 with equality if and only if m = n = p− 1.

(2) If (m,n) 6∈ {((p−1)/2, (p−1)/2), ((p−1)/2, p−1), (p−1, p−1)}, then
diam(Dp) ≤ 120

√
m+ 1.

(3) If p > (m− 1)3, then diam(Dp) ≤ 19.

The paper is organized as follows. In section 1.2 we present all results

which are needed for our proofs of Theorems 1.1.1 and 1.1.2 in sections 1.3

and 1.4, respectively. Section 1.5 contains concluding remarks and open

problems.

1.2 Preliminary results.

We begin with a general result that gives necessary and sufficient conditions

for a digraph D(q;m,n) to be strong.

Theorem 1.2.1. [ [12], Theorem 2] D(q;m,n) is strong if and only if

gcd(q−1,m, n) is not divisible by any qd = (q−1)/(pd−1) for any positive

divisor d of e, d < e. In particular, D(p;m,n) is strong for any m,n.

Every walk of length k in D = D(q;m,n) originating at (a, b) is of the

form

(a, b)→ (x1,−b+ amxn1 )

→ (x2, b− amxn1 + xm1 x
n
2 )

→ · · ·
→ (xk, x

m
k−1x

n
k − xmk−2xnk−1 + · · ·+ (−1)k−1amxn1 + (−1)kb).

Therefore, in order to prove that diam(D) ≤ k, one can show that for

any choice of a, b, u, v ∈ Fq, there exists (x1, . . . , xk) ∈ Fkq so that

(u, v) = (xk, x
m
k−1x

n
k − · · ·+ (−1)k−1amxn1 + (−1)kb). (1.1)
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In order to show that diam(D) ≥ l, one can show that there exist

a, b, u, v ∈ Fq such that (1.1) has no solution in Fkq for any k < l.

1.2.1 Waring’s Problem

In order to obtain an upper bound on diam(D(q;m,n)) we will use some

results concerning Waring’s problem over finite fields.

Waring’s number γ(r, q) over Fq is defined as the smallest positive inte-

ger s (should it exist) such that the equation

xr1 + xr2 + · · ·+ xrs = a

has a solution (x1, . . . , xs) ∈ Fsq for any a ∈ Fq. Similarly, δ(r, q) is defined

as the smallest positive integer s (should it exist) such that for any a ∈ Fq,
there exists (ε1, . . . , εs), each εi ∈ {−1, 1} ⊆ Fq, for which the equation

ε1x
r
1 + ε2x

r
2 + · · ·+ εsx

r
s = a

has a solution (x1, . . . , xs) ∈ Fsq. It is easy to argue that δ(r, q) exists if

and only if γ(r, q) exists, and in this case δ(r, q) ≤ γ(r, q).

A criterion on the existence of γ(r, q) is the following theorem by

Bhashkaran [2].

Theorem 1.2.2. [ [2], Theorem G] Waring’s number γ(r, q) exists if and

only if r is not divisible by any qd = (q−1)/(pd−1) for any positive divisor

d of e, d < e.

The study of various bounds on γ(r, q) has drawn considerable attention.

We will use the following two upper bounds on Waring’s number due to

J. Cipra [5].

Theorem 1.2.3. [ [5], Theorem 4] If e = 2 and γ(r, q) exists, then γ(r, q) ≤
16
√
r + 1. Also, if e ≥ 3 and γ(r, q) exists, then γ(r, q) ≤ 10

√
r + 1.

Corollary 1.2.1. [ [5], Corollary 7] If γ(r, q) exists and r <
√
q, then

γ(r, q) ≤ 8.

For the case q = p, the following bound will be of interest.

Theorem 1.2.4. [Cochrane, Pinner [6], Corollary 10.3] If |{xk : x ∈ F∗p}| >
2, then δ(k, p) ≤ 20

√
k.

The next two statements concerning very strong bounds on Waring’s

number in large fields follow from the work of Weil [26], and Hua and

Vandiver [10].
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Theorem 1.2.5. [Small [20]] If q > (k − 1)4, then γ(k, q) ≤ 2.

Theorem 1.2.6. [Cipra [4], p. 4] If p > (k − 1)3, then γ(k, p) ≤ 3.

For a survey on Waring’s number over finite fields, see Castro and Rubio

(Section 7.3.4, p. 211), and Ostafe and Winterhof (Section 6.3.2.3, p. 175)

in Mullen and Panario [19]. See also Cipra [4].

We will need the following technical lemma.

Lemma 1.2.1. Let δ = δ(r, q) exist, and k ≥ 2δ. Then for every a ∈ Fq
the equations

xr1 − xr2 + xr3 − · · ·+ (−1)k+1xrk = a (1.2)

has a solution (x1, . . . , xk) ∈ Fkq .

Proof. Let a ∈ Fq be arbitrary. There exist ε1, . . . , εδ, each εi ∈ {−1, 1} ⊆
Fq, such that the equation

∑δ
i=1 εiy

r
i = a has a solution (y1, . . . , yδ) ∈

Fδq. As k ≥ 2δ, the alternating sequence 1,−1, 1, . . . , (−1)k with k terms

contains the sequence ε1, . . . , εδ as a subsequence. Let the indices of this

subsequence be j1, j2, . . . , jδ. For each l, 1 ≤ l ≤ k, let xl = 0 if l 6= ji for

any i, and xl = yi for l = ji. Then (x1, . . . , xk) is a solution of (1.2).

1.2.2 The Hasse-Weil bound

In the next section we will use the Hasse-Weil bound, which provides a

bound on the number of Fq-points on a plane non-singular absolutely irre-

ducible projective curve over a finite field Fq. If the number of points on

the curve C of genus g over the finite field Fq is |C(Fq)|, then

||C(Fq)| − q − 1| ≤ 2g
√
q. (1.3)

It is also known that for a non-singular curve defined by a homogeneous

polynomial of degree k, g = (k − 1)(k − 2)/2. Discussion of all related

notions and a proof of this result can be found in Hirschfield, Korchmáros,

Torres [9] (Theorem 9.18, p. 343) or in Szőnyi [21] (p. 197).

1.3 Proof of Theorem 1.1.1

(1). As there is a loop at (0, 0), and there are arcs between (0, 0) and (x, 0)

in either direction, for every x ∈ F∗q , the number of vertices in Dq which

are at distance at most 2 from (0, 0) is at most 1 + (q − 1) + (q − 1)2 < q2.

Thus, there are vertices in Dq which are at distance at least 3 from (0, 0),

and so diam(Dq) ≥ 3.
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(2). As Dq is strong, by Theorem 1.2.1, for any positive divisor d of e,

d < e, qd 6 | gcd(pe− 1,m, n). As, clearly, qd | (pe− 1), then either qd 6 |m or

qd 6 |n. This implies by Theorem 1.2.2 that either γ(m, q) or γ(n, q) exists.

Let (a, b) and (u, v) be arbitrary vertices of Dq. By (1.1), there exists a

walk of length at most k from (a, b) to (u, v) if the equation

v = xmk−1u
n − xmk−2xnk−1 + · · ·+ (−1)k−1amxn1 + (−1)kb (1.4)

has a solution (x1, . . . , xk) ∈ Fkq .

Assume first that γm = γ(m, q) exists. Taking k = 6γm + 1, and xi = 0

for i ≡ 1 mod 3, and xi = 1 for i ≡ 0 mod 3, we have that (1.4) is

equivalent to

−xmk−2 + xmk−5 − · · ·+ (−1)kxm5 + (−1)k−1xm2 = v − (−1)kb− un.

As the number of terms on the left is (k− 1)/3 = 2γm, this equation has a

solution in F2γm
q by Lemma 1.2.1. Hence, (1.4) has a solution in Fkq .

If γn = γ(n, q) exists, then the argument is similar: take k = 6γn + 1,

xi = 0 for i ≡ 0 mod 3, and xi = 1 for i ≡ 1 mod 3.

The result now follows from the bounds on γ(r, q) in Theorem 1.2.3.

Remark 3. As m ≤ n, if γ(m, q) exists, the upper bounds in Theo-

rem 1.1.1, part (2), can be improved by replacing n by m. Also, if a

better upper bound on δ(m, q) than γ(m, q) (respectively, on δ(n, q) than

γ(n, q)) is known, the upper bounds in Theorem 1.1.1, (2), can be further

improved: use k = 6δ(m, q) + 1 (respectively, k = 6δ(n, q) + 1) in the proof.

Similar comments apply to other parts of Theorem 1.1.1 as well as Theorem

1.1.2.

(3). Recall the basic fact gcd(r, q − 1) = 1⇔ {xr : x ∈ Fq} = Fq.
Let k = 4. If gcd(m, q−1) = 1, a solution to (1.1) of the form (0, x2, 1, u)

is seen to exist for any choice of a, b, u, v ∈ Fq. If gcd(n, q − 1) = 1, there

exists a solution of the form (1, x2, 0, u). Hence, diam(Dq) ≤ 4.

Let k = 3, and gcd(m, q − 1) = gcd(n, q − 1) = 1. If a = 0, then a

solution to (1.1) of the form (x1, 1, u) exists. If a 6= 0, a solution of the

form (x1, 0, u) exists. Hence, Dq is strong and diam(Dq) ≤ 3. Using the

lower bound from part (1), we conclude that diam(Dq) = 3.

(4). As was shown in part 3, for any n, diam(D(q; 1, n)) ≤ 4. If, addition-

ally, gcd(n, q − 1) = 1, then diam(D(q; 1, n)) = 3. It turns out that if p

does not divide n, then only for finitely many q is the diameter of D(q; 1, n)

actually 4.
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For k = 3, (1.1) is equivalent to

(u, v) = (x3, x2x
n
3 − x1xn2 + axn1 − b), (1.5)

which has solution (x1, x2, x3) = (0, u−n(b+ v), u), provided u 6= 0.

Suppose now that u = 0. Aside from the trivial case a = 0, the question

of the existence of a solution to (1.5) shall be resolved if we prove that the

equation

axn − xyn + c = 0 (1.6)

has a solution for any a, c ∈ F∗q (for c = 0, (1.6) has solutions). The

projective curve corresponding to this equation is the zero locus of the

homogeneous polynomial

F (X,Y, Z) = aXnZ −XY n + cZn+1.

It is easy to see that, provided p does not divide n,

F = FX = FY = FZ = 0 ⇔ X = Y = Z = 0,

and thus the curve has no singularities and is absolutely irreducible.

Counting the two points [1 : 0 : 0] and [0 : 1 : 0] on the line at infinity

Z = 0, we obtain from (1.3), the inequality N ≥ q − 1 − 2g
√
q, where

N = N(c) is the number of solutions of (1.6). As g = n(n − 1)/2, solving

the inequality q − 1− n(n− 1)
√
q > 0 for q, we obtain a lower bound on q

for which N ≥ 1.

(5a). The result follows from Corollary 1.2.1 by an argument similar to

that of the proof of part (2).

(5b). For k = 13, (1.1) is equivalent to

(u, v) = (x13,−b+ amxn1 − xm1 xn2 + xm2 x
n
3 − · · · − xm11xn12 + xm12x

n
13).

If q > (n− 1)4, set x1 = x4 = x7 = x10 = 1, x3 = x6 = x9 = x12 = 0. Then

v− am + b = xn11−xn8 +xn5 −xn2 , which has a solution (x2, x5, x8, x11) ∈ F4
q

by Theorem 1.2.5 and Lemma 1.2.1.

(5c). For k = 9, (1.1) is equivalent to

(u, v) = (x9,−b+ anxn1 − xn1xn2 + xn2x
n
3 − · · · − xm7 xn8 + xn8x

n
9 ).

If q > (n − 1)4, set x1 = x4 = x5 = x8 = 0, x3 = x7 = 1. Then

v + b = xn2 + xn6 , which has a solution (x2, x6) ∈ F2
q by Theorem 1.2.5.
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1.4 Proofs of Theorem 1.1.2

Lemma 1.4.1. Let D = D(q;m,n). Then, for any λ ∈ F∗q , the function φ :

V (D)→ V (D) given by φ((a, b)) = (λa, λm+nb) is a digraph automorphism

of D.

The proof of the lemma is straightforward. It amounts to showing that

φ is a bijection and that it preserves adjacency: x → y if and only if

φ(x) → φ(y). We omit the details. Due to Lemma 1.4.1, any walk in D

initiated at a vertex (a, b) corresponds to a walk initiated at a vertex (0, b)

if a = 0, or at a vertex (1, b′), where b′ = a−m−nb, if a 6= 0. This implies

that if we wish to show that diam(Dp) ≤ 2p−1, it is sufficient to show that

the distance from any vertex (0, b) to any other vertex is at most 2p − 1,

and that the distance from any vertex (1, b) to any other vertex is at most

2p− 1.

First we note that by Theorem 1.2.1, Dp = D(p;m,n) is strong for any

choice of m,n.

For a ∈ Fp, let integer a, 0 ≤ a ≤ p − 1, be the representative of the

residue class a.

It is easy to check that diam(D(2; 1, 1)) = 3. Therefore, for the remain-

der of the proof, we may assume that p is odd.

(1). In order to show that diam(Dp) ≤ 2p−1, we use (1.1) with k = 2p−1,

and prove that for any two vertices (a, b) and (u, v) of Dp there is always a

solution (x1, . . . , x2p−1) ∈ F2p−1
q of

(u, v) = (x2p−1,−b+amxn1−xm1 xn2 +xm2 x
n
3−· · ·−xm2p−3xn2p−2+xm2p−2x

n
2p−1),

or, equivalently, a solution x = (x1, . . . , x2p−2) ∈ F2p−2
q of

amxn1 − xm1 xn2 + xm2 x
n
3 − · · · − xm2p−3xn2p−2 + xm2p−2u

n = b+ v. (1.7)

As the upper bound 2p− 1 on the diameter is exact and holds for all p, we

need a more subtle argument compared to the ones we used before. The only

way we can make it is (unfortunately) by performing a case analysis on b+ v

with a nested case structure. In most of the cases we just exhibit a solution

x of (1.7) by describing its components xi. It is always a straightforward

verification that x satisfies (1.7), and we will suppress our comments as

cases proceed.

Our first observation is that if b+ v = 0, then x = (0, . . . , 0) is a solu-

tion to (1.7). We may assume now that b+ v 6= 0.
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Case 1.1: b+ v ≥ p−1
2 + 2

We define the components of x as follows:

if 1 ≤ i ≤ 4(p− (b+ v)), then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for

i ≡ 0, 3 mod 4;

if 4(p− (b+ v)) < i ≤ 2p− 2, then xi = 0.

Note that xmi x
n
i+1 = 0 unless i ≡ 3 mod 4, in which case xmi x

n
i+1 = 1.

If we group the terms in groups of four so that each group is of the form

−xmi xni+1 + xmi+1x
n
i+2 − xmi+2x

n
i+3 + xmi+3x

n
i+4,

where i ≡ 1 mod 4, then assuming i, i + 1, i + 2, i + 3, and i + 4 are

within the range of 1 ≤ i < i+ 4 ≤ 4(b+ v), it is easily seen that one group

contributes −1 to

amxn1 − xm1 xn2 + xm2 x
n
3 − · · · − xm2p−3xn2p−2 + xm2p−2x

n
2p−1.

There are 4(p−(b+v))
4 = p−(b+ v) such groups, and so the solution provided

adds −1 exactly p− (b+ v) times. Hence, x is a solution to (1.7).

For the remainder of the proof, solutions to (1.7) will be given without

justification as the justification is similar to what’s been done above.

Case 1.2: b+ v ≤ p−1
2

We define the components of x as follows:

if 1 ≤ i ≤ 4(b+ v) − 1, then xi = 0 for i ≡ 0, 1 mod 4, and xi = 1 for

i ≡ 2, 3 mod 4;

if 4(b+ v)− 1 < i ≤ 2p− 2, then xi = 0.

Case 1.3: b+ v = p−1
2 + 1

This case requires several nested subcases.

Case 1.3.1: u = x2p−1 = 0

Here, there is no need to restrict x2p−2 to be 0. The components of a

solution x of (1.7) are defined as:

if 1 ≤ i ≤ 2p− 2, then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for i ≡ 0, 3

mod 4.

Case 1.3.2: a = 0

Here, there is no need to restrict x1 to be 0. Therefore, the components

of a solution x of (1.7) are defined as:

if 1 ≤ i ≤ 2p− 2, then xi = 0 for i ≡ 0, 3 mod 4, and xi = 1 for i ≡ 1, 2

mod 4.
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Case 1.3.3: u 6= 0 and a 6= 0

Because of Lemma 1.4.1, we may assume without loss of generality that

a = 1. Let x2p−2 = 1, so that xm2p−2u
n = un 6= 0 and let t = b+ v − un.

Note that t 6= p−1
2 + 1.

Case 1.3.3.1: t = 0

The components of a solution x of (1.7) are defined as: x2p−2 = 1, and

if 1 ≤ i < 2p− 2, then xi = 0.

Case 1.3.3.2: 0 < t ≤ p−1
2

The components of a solution x of (1.7) are defined as: x2p−2 = 1, and

if 1 ≤ i ≤ 4(t − 1) + 1, then xi = 0 for i ≡ 2, 3 mod 4, and xi = 1 for

i ≡ 0, 1 mod 4;

if 4(t− 1) + 1 < i < 2p− 2, then xi = 0.

Case 1.3.3.3: t ≥ p−1
2 + 2

The components of a solution x of (1.7) are defined as: x2p−2 = 1, and

if 1 ≤ i ≤ 4(p − t), then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for

i ≡ 0, 3 mod 4;

if 4(p− t) < i < 2p− 2, then xi = 0.

The whole range of possible values b+ v has been checked. Hence,

diam(D) ≤ 2p− 1.

We now show that if diam(D) = 2p − 1, then m = n = p − 1. To do

so, we assume that m 6= p − 1 or n 6= p − 1 and prove the contrapositive.

Specifically, we show that diam(D) ≤ 2p− 2 < 2p− 1 by again using (1.1)

but with k = 2p− 2. We prove that for any two vertices (a, b) and (u, v) of

Dp there is always a solution (x1, . . . , x2p−2) ∈ F2p−2
q of

(u, v) = (x2p−2, b− amxn1 + xm1 x
n
2 − · · · − xm2p−4xn2p−3 + xm2p−3x

n
2p−2),

or, equivalently, a solution x = (x1, . . . , x2p−3) ∈ F2p−3
q of

− amxn1 + xm1 x
n
2 − xm2 xn3 + · · · − xm2p−4xn2p−3 + xm2p−3u

n = −b+ v. (1.8)

We perform a case analysis on −b+ v.

Our first observation is that if −b+ v = 0, then x = (0, . . . , 0) is a

solution to (1.8). We may assume for the remainder of the proof that

−b+ v 6= 0.

Case 2.1: −b+ v ≤ p−1
2 − 1
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We define the components of x as follows:

if 1 ≤ i ≤ 4(−b+ v), then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for

i ≡ 0, 3 mod 4;

if 4(−b+ v) < i ≤ 2p− 3, then xi = 0.

Case 2.2: −b+ v ≥ p−1
2 + 2

We define the components of x as follows:

if 1 ≤ i ≤ 4(p − (−b+ v)) − 1, then xi = 0 for i ≡ 0, 1 mod 4, and

xi = 1 for i ≡ 2, 3 mod 4;

if 4(p− (−b+ v))− 1 < i ≤ 2p− 3, then xi = 0.

Case 2.3: −b+ v = p−1
2

Case 2.3.1: a = 0

We define the components of x as:

if 1 ≤ i ≤ 2p− 3, then xi = 0 for i ≡ 0, 3 mod 4, and xi = 1 for i ≡ 1, 2

mod 4.

Case 2.3.2: a 6= 0

Here, we may assume without loss of generality that a = 1 by Lemma

(1.4.1).

Case 2.3.2.1: n 6= p− 1

If n 6= p − 1, then there exists β ∈ F∗p such that βn 6∈ {0, 1}. For

such a β, let x1 = β and consider t = −b+ v + amxn1 = −b+ v + βn 6∈
{p−12 , p−12 + 1}.

Case 2.3.2.1.1: t = 0

We define the components of x as: x1 = β and

if 2 ≤ i ≤ 2p− 3, then xi = 0.

Case 2.3.2.1.2: t ≤ p−1
2 − 1

We define the components of x as: x1 = β and

if 2 ≤ i ≤ 4t, then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for i ≡ 0, 3

mod 4;

if 4t < i ≤ 2p− 3, then xi = 0.

Case 2.3.2.1.3: t ≥ p−1
2 + 2

We define the components of x as: x1 = β and

if 2 ≤ i ≤ 4(p − t) + 1, then xi = 0 for i ≡ 2, 3 mod 4, and xi = 1 for

i ≡ 0, 1 mod 4;

if 4(p− t) + 1 < i ≤ 2p− 3, then xi = 0.
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Case 2.3.2.2: n = p− 1

Case 2.3.2.2.1: u ∈ F∗p
Here, we have that un = 1, so that the components of a solution x of

(1.8) are defined as:

if 1 ≤ i ≤ 2p− 3, then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for i ≡ 0, 3

mod 4.

Case 2.3.2.2.2: u = 0

Since n = p− 1, it must be the case that m 6= p− 1 so that there exists

α ∈ F∗p such that αm 6∈ {0.1}. For such an α, let x2 = α, x3 = 1 and

consider t = −b+ v + xm2 x
n
3 = −b+ v + αm 6∈ {p−12 , p−12 + 1}.

Case 2.3.2.2.2.1: t = 0

We define the components of x as: x1 = 0, x2 = α, x3 = 1 and

if 4 ≤ i ≤ 2p− 3, then xi = 0.

Case 2.3.2.2.2.2: t ≤ p−1
2 − 1

We define the components of x as: x1 = 0, x2 = α, x3 = 1 and

if 4 ≤ i ≤ 4t, then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for i ≡ 0, 3

mod 4;

if 4t < i ≤ 2p− 3, then xi = 0.

Case 2.3.2.2.2.3: t ≥ p−1
2 + 2

We define the components of x as: x1 = 0, x2 = α, x3 = 1 and

if 4 ≤ i ≤ 4(p − t) + 3, then xi = 0 for i ≡ 0, 1 mod 4, and xi = 1 for

i ≡ 2, 3 mod 4;

if 4(p− t) + 3 < i ≤ 2p− 3, then xi = 0.

Case 2.4: −b+ v = p−1
2 + 1

Case 2.4.1: u = 0

We define the components of x as:

if 1 ≤ i ≤ 2p− 3, then xi = 0 for i ≡ 0, 1 mod 4, and xi = 1 for i ≡ 2, 3

mod 4.

Case 2.4.2: u 6= 0

Here, we may assume without loss of generality that u = 1 by Lemma

(1.4.1).

Case 2.4.2.1: m 6= p− 1

If m 6= p− 1, then there exists α ∈ F∗p such that αm 6∈ {0, 1}. For such
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an α, let x2p−3 = α and consider t = −b+ v − xm2p−3un = −b+ v − αm 6∈
{p−12 , p−12 + 1}.

Case 2.4.2.1.1: t = 0

We define the components of x as: x2p−3 = α and

if 1 ≤ i ≤ 2p− 4, then xi = 0.

Case 2.4.2.1.2: t ≤ p−1
2 − 1

We define the components of x as: x2p−3 = α and

if 1 ≤ i ≤ 4t, then xi = 0 for i ≡ 1, 2 mod 4, and xi = 1 for i ≡ 0, 3

mod 4;

if 4t < i ≤ 2p− 4, then xi = 0.

Case 2.4.2.1.3: t ≥ p−1
2 + 2

We define the components of x as: x2p−3 = α and

if 1 ≤ i ≤ 4(p − t) − 1, then xi = 0 for i ≡ 0, 1 mod 4, and xi = 1 for

i ≡ 2, 3 mod 4;

if 4(p− t)− 1 < i ≤ 2p− 4, then xi = 0.

Case 2.4.2.2: m = p− 1

Case 2.4.2.2.1: a ∈ F∗p
Here, we have that am = 1, so that the components of a solution x of

(1.8) are defined as:

if 1 ≤ i ≤ 2p− 5, then xi = 0 for i ≡ 2, 3 mod 4, and xi = 1 for i ≡ 0, 1

mod 4.

Case 2.4.2.2.2: a = 0

Since m = p− 1, it must be the case that n 6= p− 1 so that there exists

β ∈ F∗p such that βn 6∈ {0.1}. For such a β, let x2p−5 = 1, x2p−4 = β and

consider t = −b+ v − xm2p−5xn2p−4 = −b+ v − βn 6∈ {p−12 , p−12 + 1}.

Case 2.4.2.2.2.1: t = 0

We define the components of x as: x2p−5 = 1, x2p−4 = β, x2p−3 = 0 and

if 1 ≤ i ≤ 2p− 6, then xi = 0.

Case 2.4.2.2.2.2: t ≤ p−1
2 − 1

We define the components of x as: x2p−5 = 1, x2p−4 = β, x2p−3 = 0 and

if 1 ≤ i ≤ 4t− 2, then xi = 0 for i ≡ 0, 3 mod 4, and xi = 1 for i ≡ 1, 2

mod 4;

if 4t− 2 < i ≤ 2p− 6, then xi = 0.
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Case 2.4.2.2.2.3: t ≥ p−1
2 + 2

We define the components of x as: x2p−5 = 1, x2p−4 = β, x2p−3 = 0 and

if 1 ≤ i ≤ 4(p − t) − 1, then xi = 0 for i ≡ 0, 1 mod 4, and xi = 1 for

i ≡ 2, 3 mod 4;

if 4(p− t)− 1 < i ≤ 2p− 6, then xi = 0.

All cases have been checked, so if m 6= p−1 or n 6= p−1, then diam(D) <

2p− 1.

We now prove that if m = n = p − 1, then d := diam(D(p;m,n)) =

2p − 1. In order to do this, we explicitly describe the structure of the

digraph D(p; p− 1, p− 1), from which the diameter becomes clear. In this

description, we look at sets of vertices of a given distance from the vertex

(0, 0), and show that some of them are at distance 2p − 1. We recall the

following important general properties of our digraphs that will be used in

the proof.

• Every out-neighbor (u, v) of a vertex (a, b) of D(q;m,n) is completely

determined by its first component u.

• Every vertex of D(q;m,n) has its out-degree and in-degree equal q.

• In D(q;m,m), x→ y if and only if y→ x

In D(p; p− 1, p− 1), we have that (x1, y1)→ (x2, y2) if and only if

y1 + y2 = xp−11 xp−12 =

{
0 if x1 = 0 or x2 = 0,

1 if x1 and x2 are non-zero.

For notational convenience, we set

(∗, a) = {(x, a) : x ∈ F∗p}

and, for 1 ≤ k ≤ d, let

Nk = {v ∈ V (D(p;m,n)) : dist((0, 0), v) = k}.

We assume thatN0 = {(0, 0)}. It is clear from this definition that these d+1

setsNk partition the vertex set ofD(p; p−1, p−1); for every k, 1 ≤ k ≤ d−1,

every out-neighbor of a vertex from Nk belongs to Nk−1 ∪Nk ∪Nk+1, and

Nk+1 is the set of all out-neighbors of all vertices from Nk which are not

in Nk−1 ∪Nk.

Thus we have N0 = {(0, 0)}, N1 = (∗, 0), N2 = (∗, 1), N3 = {(0,−1)}.
If p > 2, N4 = {(0, 1)}, N5 = (∗,−1). As there exist two (opposite) arcs

between each vertex of (∗, x) and each vertex (∗,−x+ 1), these subsets of
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vertices induce the complete bipartite subdigraph
−→
Kp−1,p−1 if x 6= −x+ 1,

and the complete subdigraph
−→
Kp−1 if x = −x+ 1. Note that our

−→
Kp−1,p−1

has no loops, but
−→
Kp−1 has a loop on every vertex. Digraph D(5; 4, 4) is

depicted in Fig. 1.2.

(0, 0)

(∗, 0) (∗, 1)

(0,−1)

(0, 1)

(∗,−1) (∗, 2)

(0,−2)

(0, 2)

(∗,−2)

Fig. 1.2 The digraph D(5; 4, 4): x2 + y2 = x4
1y

4
1 .

The structure of D(p; p− 1, p− 1) for any other prime p is similar. We

can describe it as follows: for each t ∈ {0, 1, . . . , (p− 1)/2}, let

N4t = {(0, t)}, N4t+1 = (∗,−t),
and for each t ∈ {0, 1, . . . , (p− 3)/2}, let

N4t+2 = (∗, t+ 1), N4t+3 = {(0,−t− 1)}.
Note that for 0 ≤ t < (p − 1)/2, N4t+1 6= N4t+2, and for t = (p − 1)/2,

N2p−1 = (∗, (p + 1)/2). Therefore, for p ≥ 3, D(p; p − 1, p − 1) contains

(p − 1)/2 induced copies of
−→
Kp−1,p−1 with partitions N4t+1 and N4t+2,

and a copy of
−→
Kp−1 induced by N2p−1. The proof is a trivial induction

on t. Hence, diam(D(p; p − 1, p − 1)) = 2p − 1. This ends the proof of

Theorem 1.1.2 (1).

(2). We follow the argument of the proof of Theorem 1.1.1, part (2) and

use Lemma 1.2.1, with k = 6δ(m, p) + 1. We note, additionally, that if

m 6∈ {p, (p−1)/2}, then gcd(m, p−1) < (p−1)/2, which implies |{xm : x ∈
F∗p}| > 2. The result then follows from Theorem 1.2.4.

(3). We follow the argument of the proof of Theorem 1.1.1, part (5b) and

use Lemma 1.2.1 and Theorem 1.2.6.

This ends the proof of Theorem 1.1.2.
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1.5 Concluding remarks.

Many results in this paper follow the same pattern: if Waring’s num-

ber δ(r, q) exists and is bounded above by δ, then one can show that

diam(D(q;m,n)) ≤ 6δ + 1. Determining the exact value of δ(r, q) is an

open problem, and it is likely to be very hard. Also, the upper bound

6δ + 1 is not exact in general. Out of all partial results concerning δ(r, q),

we used only those ones which helped us deal with the cases of the diameter

of D(q;m,n) that we considered, especially where the diameter was small.

We left out applications of all asymptotic bounds on δ(r, q). Our computer

work demonstrates that some upper bounds on the diameter mentioned in

this paper are still far from being tight. Here we wish to mention only a

few strong patterns that we observed but have not been able to prove so

far. We state them as problems.

Problem 1. Let p be prime, q = pe, e ≥ 2, and suppose D(q;m,n) is

strong. Let r be the largest divisor of q − 1 not divisible by any qd =

(pe− 1)/(qd− 1) where d is a positive divisor of e smaller than e. Is it true

that

max
1≤m≤n≤q−1

{diam(D(q;m,n))} = diam(D(q; r, r))?

Find an upper bound on diam(D(q; r, r)) better than the one of Theorem

1.1.1, part (5c).

Problem 2. Is it true that for every prime p and 1 ≤ m ≤ n, (m,n) 6=
(p− 1, p− 1)), diam(D(p;m,n)) ≤ (p+ 3)/2 with the equality if and only

if (m,n) = ((p− 1)/2, (p− 1)/2) or (m,n) = ((p− 1)/2, p− 1)?

Problem 3. Is it true that for every prime p, diam(D(p;m,n)) takes

only one of two consecutive values which are completely determined by

gcd((p− 1,m, n)?
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