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Mathematical Harmonies
Mark Petersen

What ismusic? When you hear aflutist, asignal is sent from her fingersto your ears. As
thefluteis played, it vibrates. The vibrationstravel through the air and vibrate your
eardrums. These vibrations are fast oscillationsin air pressure, which your ear detects as
sound.

The Basics

The ssimplest model of amusical sound is a sine wave, were the domain (x-axis) istime
and the range (y-axis) is pressure.

P = Asin(2xft)
where: P pressure, in decibels or Pascals
t time, in seconds
A amplitude (height of the wave) or volume, in decibels or Pascals
f frequency or pitch, in hertz.
T period, in secondsis the duration of onewave. T =1/f
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Figure 1. A sinewave with amplitude A = 60 dB and frequency f = 100 Hz.

In general, a sound has two characteristics: pitch and volume. The pitch, or note played,
corresponds to the frequency of the wave. High notes have high frequencies, so the
pressure varies quickly. Low notes have low frequencies. Frequency is measured in
Hertz (Hz), which is the number of waves per second.
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Figure 2. Two notes, both with amplitude A = 60 dB. The lower note has frequency
f =100 Hz (solid). The higher note has frequency f = 125 Hz (dashed).
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Figure 3. Frequency ranges of various instruments, in Hz. Audible frequencies
range from 20 Hz to 20,000 Hz.

Volume, or loudness, corresponds to the amplitude of the pressure. When one hears loud
music, like at arock concert, the large pressure oscillations may be felt by the body.
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Figure4. A loud note at A =60 dB (solid) and aquiet note at A = 40 dB (dashed).
Both notes have afrequency of f= 100 Hz.
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Figure 5. Intensities of various sounds on alinear and logarithmic scale.



Pressure is normally measured in Pascals, which is force per unit area (1 Pa= 1 N/m?).
As shown in Figure 5, most sounds are lessthan _ Pa, while loud ones are between 5 and
10. The decibel scaleisalog pressure scale, which is used for volume so that the quiet
sounds are spread out. Pascals are converted to decibels as follows:

Pea

= 20*|o
Pee 951075

The constant 2x10™° was chosen because 2x10™° Pais considered the hearing
threshold. Thisiswherethe p,, iszero, because when p,, = 2x10°Pa, we have

Pg =20*logl=0.

Frequencies of Octaves and Harmonics

In order to understand why certain combinations of notes make harmony and others do
not, we will study the ssimplest instrument, asingle string. The formulafor the frequency

of avibrating string is
frequency = 1 tension
2* length | line density

where: frequency isin Hertz = 1/sec
length isin meters
tension is aforce, in Newtons = kg* m/sec?
line density is the string thickness, in kg/m

Notice that we may change the frequency, or pitch, in three ways.

1. Tighten the string: T tension resultsin: T frequency
2. Useathicker string: T line density resultsin: l frequency
3. Usefingersonfretst: | length resultsin: T frequency

Specificaly, frequency isinversely proportional to the length of the string. This meansif
| halve the length of the string, the frequency will double. It turns out that a doubled
frequency is an octave higher. Using these facts, we may construct the following chart.

Note Frequency  Diagram of vibrating string

low low low A f=55Hz _——
— <6/\
low low A f=110Hz 17

7
low A f=220 Hz %

O
middle A f =440 Hz Y%

! Frets are the vertical bars on the neck of a guitar.



Figure 6. Octaves of avibrating string.
The sequence of frequencies of these octaves. 55, 110, 220, 440, isageometric
sequence. A geometric sequence is a sequence where the previous term is multiplied by a
constant. In this case, the constant istwo. A very simple example of ageometric
sequenceis 2, 4, 8, 16, 32, If this sequence were graphed, it would look like an
exponential function.

The important point hereis:
The frequencies of octaves form a geometric sequence.

This fact has many physical manifestations, such as.

e Low instruments must be much larger than high instruments. In general, an
instrument which is an octave lower must be twice aslarge. For example, in the
string family, as we progress from violin, viola, cello, to bass, the cello islarge and
the bassis very large.

e Organ pipes must aso double in sizeto go down an octave. Thisiswhy the organ
pipes at the front of a church, if arranged in descending order, approximate an
exponential curve.

e Fretsonaguitar are far apart at the neck and close together near the body, a pattern
which also appears on log graphing paper. Frets and log paper both follow an inverse
exponential pattern.

If we could watch our simple string vibrate with a slow motion camera, we would see
that it vibrates in many modes, as shown below. The main mode is the fundamental
frequency or first harmonic, and gives the note its specified frequency. The string may
vibrate in higher modes, or harmonics, at various times or simultaneously.

Note Frequency Harmonic Diagram of vibrating string
low low low A f=55Hz fundamental _—
low low A f=110Hz second 15
— ; - T~ SN~
low E f=165Hz third s
low A f=220Hz  fourth o S S >
14
middle C* f=275Hz fifth oL
1/5
middle E f=330Hz  sixth oSS
1/6
approx. middleG  f= 385Hz seventh \

middle A f=440Hz eighth




Figure 7. Harmonics of avibrating string.
The sequence of frequencies of these harmonics: 55, 110, 165, 220, 275, form an
arithmetic sequence. An arithmetic sequence is a sequence where a constant is added to
the previous term. In this case, the constant is55. A simple example of an arithmetic
sequenceis2, 4, 6, 8, 10,

To summarize our important points,

The frequencies of octaves form a geometric sequence.
The frequencies of harmonics form an arithmetic sequence.

Let us overlay an arithmetic sequence (harmonics) on a geometric sequence (the octaves):

Arithmetic (harmonics) 2 4 6 8 10 12 14 16 18 20
Geometric (octaves) 2 4 8 16

— H_J — —~— " ~ _
Number termsin between: zero one three seven

Figure 8. Numerical example of harmonics overlaid on octaves.

Notice that the number of arithmetic terms between each geometricisO, 1, 3,7, Figure9.
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Figure 9. Harmonics of low low low A (as on Figure 7) shown as vertical lines below the
keyboard. Frequencies are shown above the keyboard.

Y ou may have noticed that the harmonics of A include C# and E, which are the notes of
an A-mgor chord. We will return to this issue after some diversions.



Har monics of I nstruments

Two characteristics of amusical sound are volume and pitch. How does one know the
difference between aflute and aviolin, even when they play the same note and volume?
If we measured the air pressure near aflute, oboe, and violin al playing middie A

(440 Hz), it would look like this:
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Figure 10. Pressure variations with time of aflute, oboe, and violin.

Thelr pressure signals look very different, even though the amplitude and fundamental
frequencies are dl the same. This difference is caused by the relative amplitudes of the
higher harmonics. This can be seen when the volume of each harmonic is graphed
separately, asfollows.
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Figure 11. Amplitudes of the harmonics of aflute, oboe, and violin playing middle A%

2 In advanced mathematics, these are called the Fourier coefficients of the wave formsin Figure 10.
Fourier Analysisis used to calculate these coefficients for agiven signal.



Notice that the flute s harmonics consist mostly of the fundamental at 440 Hz and the
second harmonic at 880 Hz. When the air pressure near aflute is actually measured, we
see the sum of these two harmonics. Thisis equivalent to adding the two sine curves as
follows:

Fundamental: 440 Hz, 0.004 Pa = 46 dB
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Figure 12. Summation of 1% and 2™ harmonic of aflute.

The third graph is the signature pressure wave of the flute (compare to Figure 10). The
same process could be used to produce the oboe and violin pressure waves, but the other
harmonics shown in Figure 11 must be added in.

Synthesized music imitates instruments by combining harmonics, just aswe did for a
flute above. Synthesized music often sounds fake because its harmonics are constant,
while real music has harmonics that change subtly as the musician varies timbre, vibrato,
and phrasing.



Beats and Intervals

When two sine waves are played with nearly the same frequency, beats are made. These
beats can be heard by playing two guitar strings or flutes with one slightly flatter than the
other.

Two frequencies, 100 Hz and 110 Hz, both at 0.01 Pa

0.o1
pressure. 005

This pattern produces super-waves which are audible as beats.
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Figure 13. Superposition of two waves of dightly different frequency.

Notice how the two curvesin thefirst graph vary between being aligned and in opposite
aignment. The summation curve in the second graph is doubled when these two graphs
are aligned and cancel out when they are in opposite alignment.

Beats are strongest when the frequency separation is between a half step and a minor
third. When the separation is smaller than this, the beats are too slow for the ear to
distinguish. When the separation is larger, the beats are too fast to hear. Thisis shown
graphically in Figure 14.

For physiological reasons, the human mind dislikes beats. We may therefore assume that
frequencies that are close enough to produce beats will not be harmonious. In fact, the
strength of these beats can be used to represent the consonance, or harmoniousness,
between two frequencies.
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Figure 14. Consonance verses frequency separation ( f,/ f,)

Our conclusionis
Frequencies close to each other create beats and sound bad (dissonance)

We may use this knowledge to investigate why certain combinations of notes sound
harmonious and others do not. First we must cover some music vocabulary. An interval
isthe difference between two pitches. A thirdisan interval which isthree steps above
the bass. For example, in the key of C magjor, E isthe third, and G isthe fifth (see Figure
16).

Returning to our keyboard, let us examine the harmonics of severa intervals.

Octaves Harmonics of low low C and low C. Octaves sound like the same note because

WA ALY

Fifth Harmonicsof C and G. Hereevery other harmonlc Imes up Whl Ie the others are
not close enough to create beats. The interval of afifth isvery harmonious.
C!D!E

A FLHB ! FLHB JDL FLHB JDL JGHB JDL FLHB
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Third Harmonicsof C and E. Many harmonics line up and most are not close enough to

create beats. Theinterval of athird is also harmonious.
F!G!A!B C!D!E F!G!A!B C!D!E

! CHE i CHE FLHB JDL FLHB 3

||| ||||||||||
Diminished Fifth Harmonics of C and F#. Notice that no harmonics lines up and many
are close enough to create beats. Thisinterval is dissonant (not harmonious).
C!D!E
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We can measure the dissonance of a pair of notes, like the C and F* above, as follows:
Look for al the harmonics of C that are within a half step of a harmonic of F*, but don t
line up exactly. These are starred above. The dissonanceis high for a pair of notes that
have many of these close harmonics.

Because most of the harmonics of athird and fifth line up, these intervals have low
dissonance. The diminished fifth has high dissonance. Figure 15 shows a graph which
was constructed by testing many intervals for dissonance in this manner.

FREQUENCY RATIO —

1 6/5 5/4 4/3 3/2 5/3 2/1
[ | | !

Octave

Minor 3rd
Major 3rd
Perfect 4th
Perfect 5th
Major 6th

<+ AMOUNT OF DISSONANCE
Unison

Figure 15. Total dissonance of intervals along an octave.

We have just shown that the mgjor scale can be developed mathematically! Although
cultures of the world have many different scales, they all include some combination of
these intervals. Ancient cultures sang and played these intervals intuitively without
knowing about frequencies and harmonics.
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Just and Equal Temperament

Because of the way the harmonics line up the frequency ratios of mgjor intervals turn out
to be exact fractions, as shown in Figure 15. For example, the frequency of G is exactly
3/2 timesthat of C. Beginning with afrequency of 65.4 Hz for C, we may build the
major scale using these ratios.

Interval from C: octave

2nd 3I’d 4th 5th 6th 7th
C ! D ! E F ! G ! A ! B C
Frequency ratio: 1 98 54 43 32 53 158 2
| Frequency (Hz): 654 736 818 872 981 109 1226 130.8|

Ratio from one 1.125 (1.067) 1.111 (1.067)
note to the next: 1.111 1.125 1.125

Figure 16. Frequencies of notesin key of C in just temperament. Parenthesis
indicate half-steps.

This system of tuning is called just temperament because when these intervals are played
the harmonics line up and it sounds just perfect .

But perfection comes at aprice. Notice that the whole note frequency ratios are 1.125 for
CD, FG and AB, but 1.111 for DE and GA. Suppose you had aflute tuned in just
temperament in the key of C. Then the harmonics line up perfectly in the key of C, but
not in any other key. For example, inthe key of D thefirst ratiois 1.111, but it needsto
be 1.125. With just temperament, your flute is only good in one key!

Just temperament instruments were the standard until the 1700s. A flutist would have
had to own several flutes each tuned to a different key. Likewise, harpsichords had to
have several keyboards for different keys. Vocalists and stringed instruments without
frets are unaffected, because the pitch is not hardwired into the instrument but may be
chosen exactly.

In the 18" century Bach and other musicians advocated a new tuning standard. In equal
temperament the ratio for each step is always the same. The harmonics of an equal
tempered instrument do not exactly lineup. Thisisasmall sacrifice, asonly trained
musicians can hear the difference. Inreturn for almost perfect we get instruments that
can play in every key. Modern instruments use equal temperament.



12

Interval from C: o gd g gh g 7 ootave
C D E F ! G ! A ! B C
[Frequency (H2): 654 734 824 873 98 110 1235 1308

Ratio from one 1.122 (1.059) 1.122 (1.059)
note to the next: 1.122 1.122 1.122

Figure 17. Frequencies of notesin key of C in equal temperament.
In equal temperament the frequency ratio for awhole step isaways 1.122, which is
between the 1.125 and 1.111 found in the just temperament scale. This number is arrived
at asfollows.

e Thereare 12 half stepsin an octave, and an octave s frequency ratio is 2.

The frequency ratio of each half stepis: 122 =1.059
¢ There are 6 whole stepsin an octave.

The frequency ratio of each whole step is: V2=1122
Conclusion

The mathematics of harmonics and vibrating strings is a beautiful example of the
mathematics that surrounds us every day. Music, one of our most ancient and universal
traditions, is at once quantifiable and emotional, both mathematical and moving. My
hope is that this introduction can show students that math is not dry and boring, but
exciting, intriguing, and fun.
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