I. VARIOUS METHODS OF INTERPOLATION

§2. The Lacrance Formula

Let us consider the

followin, blem : e
real numbers g€ problem: let two sets each consisting of n

T1, T2, 23, ... y Lny ﬁ—v

Y1, Y2, ys, . . ., Yny 2
be given where the numbers (1) are
of the numbers (2). TItis required
degree satisfying the equations

pairwise distinct (we do not require this
to find a polynomial of lowest possible

L(z,) = Yi

(C=1,2...,n). @3
To solve the problem it is sufficient to note that fo

r the polynomial

l(z) = (= !EH@? IE
(e — z)- - (e — Zi_1)(zp — Try1) - - (z — Tn) 4)

the equations

Lz = ﬁc for ¢+ &,

1 for {=¢
hold.
Condition (3) is therefore satisfied by the polynomial
L(z) = 3
(x) WUH Yale(). (5)

The degree of this polynomial is at most n — 1.
other polynomial M (z) from H,_; which satisfies cond
_&m. case, then the difference L(z) — M(z) would be
which would not be identically

There is however no
ition (3); if this were
: ‘ & polynomial of H,_,
ch : Zero and would possess the n roots (1), but
this is impossible. The polynomial L(z) is hence the unique solution ow the

wSEoB.. Formula (5), which represents this polynomial in terms of the z;
and y;, is called the LaGrangs interpolation formulg, .
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The polynomial l;(z), which is called a basis polynomial, can be written in
a more abbreviated form. If we define

(@) = (z — z1)(z — z2) ... (z — ), 6)
then
@ =z (@ = 1) (@ — Tag1) (2 — 2) = allel@wﬂ
@ = 21) -+ (20 = Te-1)(@r = Tagr) -+ (21 = 22) =l a&m.aww = o'(z1),
whence
() = ——22) .

o' (ze)(x — x1) .

If P(z) is any polynomial of H, 1 and zi, z, . . . , Tn are distinet values of its

argument, then the equation

P(x) = 3. Pz)l(a), ®)

k=1

holds, since both sides of this equation are polynomials from H —1 which
coincide at the n points z;. In particular,

M??& = 1. 9

k=1

Now if f(z) is an arbitrary function defined on the interval [a, b] and the z;
are particular nodal points chesen in this interval, then

L@ = 3 fw)lu) (10)

k=1

is the unique polynomial of H,_; which coincides with f(z) at the nodes z,.
Of course, L(z) and f(z) may differ at all points z + z;. The polynomial
(10) is called the LAGRANGE interpolation polynomial for the function f(z).
In order to emphasize its dependence on the function, we sometimes denote
it by L[f; z]. Formula (8) then implies

LIP;2) = P(z), (11)

if P(z) is a polynomial of H, ;.

Now suppose that on its domain of definition [a, b] the function f(z) possesses
a finite derivative of nth order. In this case we are able to construct a useful
expression for the difference f(z) — L(z) at the non-nodal points. TFor such
a point z (which is now to be considered fixed in the interval [a, b]) we define?:

*Sincez 4 z;(1=1,2,...,n), w(z) % 0.
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_J(z) = L

K w(z) (12)

and
o(2) = f(2) = L(2) — Ku(z).
This function is defined on la, b] and possesses a finite nth derivative
9™ (2) = f™(2) — Knl, (13)
since L(z) is a polynomial from H n-1, and 0™ (2) = nl. It is obvious that

o(a1) = ola) =+ = glz) = 0,
Moreover, from (12)

e(z) = 0.

Now according to RoLLE’s theorem, in each of the n intervals between the
n + 1 points z, 1, 23, ..., z, there is at least one root of the derivative
¢'(2); ¢'(2) therefore has at least n distinet roo ;

Repeated application of RoLLr's theorem then yields n — 1 (distinct!)
roots of the second derivative ¢”(z) in the n — 1 intervals between the n
roots of ¢’(z). By continuing this procedure, we arrive at a root of the nth
derivative o™ (z) which lies between the smallest and largest of the numbers
%y %1, 22, . . ., Zn. Denoting this root by £, we then obtain from (13)

™®

= n!

Formula (12) now leads to the LAGRANGE interpolation formula with remainder:

(n)
1) = L) + 120 (14)

n!

it is hereby of importance that q < £ <b.
Formula (14) affords the simple

Theorem. 1If f(z) is an entire Junction defined on [a, b] and if the number
of nodes, which are all assumed to lie in la, b], is increased without bound accord-
ing to any rule whatever, then

lim L(z) = f(z)

n—r o

uniformly on [a, b].
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Proof. For any z ela, b, |o(z) | S (b — a)". 1f we set
M, = max | f®™(z) |,
then it follows from (14) that
M. n
@) - L@)| 5 20 - o).

In Volume I, Chapter IX, § 1 we proved that
a\aﬂ

i = (.
.‘—..m.ﬁs n
From this it follows that
lim V. e(b — avu_ = 0,
n— o | n .
and hence a forttor: that
lim E“.: e"(b — pv._H_ = 0. (15)
n— o | n
Since
n" -
w._.l_ <e,

it follows from (15) that

lim Tﬁ ® - QL =0,

n— o

wherewith the theorem is proved.

§3. A Rearrangement of the LAGRANGE Formula—NEWTON'S Formula

Suppose that we know the values f(z1), . .. ) f(z,) of some ?boﬁcw at WMWM
nodes z1, T2, . . . , &n, and we now wish to find its values at non-nodal po m
If the mm.Em.EE_ properties of the function are nice MEEMF nwmmﬂwwﬁmﬁﬂ.

i lation polynomial represen 1
already know—the LAGRANGE interpo . e
i ber of nodes is sufficiently hig
tion to arbitrary accuracy when the EE”H .
H.wwwamowb this case it is both natural and justified to set the unknown value

f equal to the known value of L(z). . . )
° wm“.v mM@SEﬁ suppose that f(z) is the steam pressure in a boiler at ?Eh
perature z. If we measure this pressure at the ﬁmgvawm.ﬂﬁmm aw Mu_ - .w.o.m mﬂ
and form the interpolation polynomial we obtain a formula that ma.
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possible for us to calculate the pressure at unobserved temperatures as well.? w
However, for this example the form (10) of the interpolation polynomial |
turns out to be unsuitable. For if we subsequently perform still another
measurement of the temperature r,,1, we must then change all summands
in the sum (10) and carry out all calculations anew. This situation gave rise

to the idea, which goes back to Newron, of writing the polynomial L(z)
not in the form (10), but rather in the form

L(z) = Ao + A1(z — 1) + A2(z — 21)(z — z2)
+t+ Ali(z —m) .. (5 — Tpo1). (16)

If we here substitute z = 7;, z = T3, ..., T = z, in succession and each
time make use of L(z;) = y; we thus find all the coefficients Ag, Ay,
An-a. It is immediately obvious that A, ; depends only on 13, zo, . . . S Tk
and y1, y2, ..., yx and not on z; and y: for © > k. Thus introduction of a
new node requires the addition of only a single new summand in (16)
all summands already present are retained.

We now develop a formula for calculating A,_1. Since the polynomial

hwﬁav = Ao+ \:AH.I auv Gy O ._L.alnm..n —T1)- AH = leuu

takes on the values y1, o, .

while

-+ Yx for the arguments z = z), z,, . . . , Tg, 1t
may be represented in the LAGRANGE form (5): 1
k
Lo(z) — wi(z) .
@) m wi(z)(z — a_.v@
where
wi(z) = (2 = 1) (z — 23) ... (z — ).
Its leading coefficient A;_; is therefore
k m\
kﬁwlm = M p —. AH.NV
=1 wi(z,)
It remains only to note that
Smmﬂb = AH... - HHV e AH-. = R..vamH—. |.Hs.+u.v ek AH.. = H*v. Q.MV

Thus, for example,

v2
4, =N
L Hul&m.._u.&n.l.au»
U1 Y2 Y3
Az = + :
@ = 2)(1 — 29) " (2 — 2z = z) T @ = a0 (s = 29)
3 Intentionally schematic.
“empirical formula’’,

Ao = 1,

In practice direct interpolation is seldom used to obtain an

: 1
3. A REARRANGEMENT OF THE LAGRANGE FORMULA—NEWTON 8 FORMULA 3

We now consider more closely the important case in which the nodes ».oﬁb
an arithmetic sequence. For this purpose we first define the concept of dif-
ferences. Let

Yo, Y1, Y2, Y3, - (19)
be any finite or infinite sequence of numbers. We define ¢
Ayr = Y1 — Un
A%y, = Ayrn — Ay, |
Artly, = Aty — Aty
One easily sees that
Due_a = Yr42 — 2Yi41 + Y
A3y = Yie3 — 3Yre2 + 3Yrel — Y
and in general
Ay = 2 (=D Cryirn (20)
r=0
which can easily be verified by complete induction. The quantities Ayy,
A?y,, . . . are called differences of first, second, ete. order of the sequence (19).

We now return to formula (16) and choose the interpolation nodes

nn=a z=a+h z23=a-+2h ..., o =a+ (n — 1A,
where % is a nonzero number.
In this case

2z — 2, = (1 — 1)h;
hence from (18) it follows that
wh(zs) = (=D R — DIk — DL
Substituting this into (17), we find

x (=1
Ait= m K16 — 1)1k — )

or
k-1
1

> (=D Ty

kﬁ.wlw == _.r.kl.uﬂwn - “_.v_ =

1+ We actually introduce new variables Ay, A%, . . . starting with the variable y. It would

therefore be more natural to adopt the notation (Ay)s, (A%, -
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Comparing this result with (20), we finally obtain

Dw.LS
hr o —
TRk -l

and formula (16) thus becomes

L) =+ ABE-2, A0 (5 —a)s—a — k)

1! h2 2!
Ay (z—a)z—a—-h...[t—a— (n— 2k
0 O = CE)] (21)
This formula is called the Newron interpolation formula.
If
¥ = fla + (k — 1)A),

one also uses the notation

A"y = A™la + (k — 1)A).
NEewToN’s formula then assumes the form &

Lif; 2] = M D.\.Mav (x—a) (x—a—h). @_ [ —a— (k= 1) 22)

If, in umﬁ.ﬂaiwu“ P(z) is a polynomial from H,_;, then for any pair of num-
bers a, k the identity

Mz —a— (k- 1)K

Pa) =3 4P@ @-a@-a-4h.

i ht k! (23)
holds.
Example. Let
P = QJ&QIHM_&...AMIHV” o
In this case
P(a) =1, Pla+h) = w Pla+2h) =--+=Pla+ (n — 1)k] =
and hence

A*P(a) = Mc (=1)*"CiP(a + k) = (- :r o i

¢ Here A%, = yi, A%(a) = f(a).
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Therefore
m—2(n—-1—-2)...(2 — 2)
n!
n—1
ralwaﬁalﬂ...«alw.*as
= Z (=D 5 :
Substituting z = n + m, we obtain the useful ES&@
-1
K 3lw n1(n+m—2)!
m (-n* Catm = (=1) FEEE T (24)

We shall subsequently make use of this identity in a somewhat different form;
this is obtained by replacing the index k& by n — k and interchanging the
roles of n and m:

m—1 ?.z.u_l.; .INJ_
wm — 1n!

MA :?; CE = (1) (25)

§4. Interpolation with Multiple Nodes

In the preceding sections we have constructed the interpolation polynomial
from its values at the nodal points. We now consider the following more
general problem. Suppose that we are given the nodes (1) and the numbers

-1
Y, .S.- LI @.mﬂ v

Y2 @u, sy Qw.is

= = 2 s s s 8 & s = =

« s s & e 8 s = = s« =

(an—1)

Yngh Lioh et e

It is then required to construct a polynomial H(z) of lowest possible degree
which satisfies the conditions

HP@) =y (=1,2,...,n r=0,1,...,a; —1). (26)

This sort of Eﬁmwvoﬂmﬂos was first studied by HeErmITE [2].
It is easily seen that the problem has exactly one solution. Indeed, if we set

Piz) = AP + APz —z) ++ -+ A9, (z — z)%7?,

- then

H(z) = Pi(z) + (z — 21)®P2(z) -+
+ (z — z1)%(z — z2)™*... (2 — 2p)™"'Pa(z). (27)

For the point z; is an ai-fold root of H(z) — Pi(z); differentiating (27)
(21 — 1) times in succession and substituting z = z; into the expressions so
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obtained and into (27), we obtain all the coefficients of the polynomial P; (2).
In the same way we then make use of the equation

LB _ poa) bt @ = 29 .. (& — 20)™ P

(z — 1)
in order to determine the coefficients of the polynomial Py(z), and etec.
Finally, all the coefficients of H (z) are determined. The degree of H(z) is
clearly not greater than m — 1 where m = artaz+4+- 4+ a, On the
other hand, there is no other polynomial M (z) from H,_; which satisfies all
the conditions (26), since otherwise the difference H (z) — M(z) would have
a total of m roots (taking into account their multiplicities).

It is possible to find a formula which expresses the coefficients of the poly-
nomial H(z) in terms of the values given in the problem; however, we shall
not here undertake these general considerations,
to three special cases:

LI ai=ar=-+-=

but rather restrict ourselves

an = 1 the problem leads to construction of the
LAGrANGE interpolation polynomial.

II. If n = 1 there is only one node, and the solution to the problem is
given by the TAYLOR polynomial

(a1—1)
u1 ar—1

H(z) HS+NIWQIHL+...+§|IHVI_AHIHL

III. Ifa1 = ag =+ ++ = a, = 2 the solution reads

H@ = 2| 1- S8 ooy 126y 4 S hie — aiBe); (28)
k=1 o' () =10

where (as previously)

w(@) = (& — 21)(z — 22) ... (x ~ z2), ??& - EAH%MM“HVI HL.

To prove formula (28) we first note that the degree of the polynomial H ()
is not greater than (2n — 1). The equations

H(z:) =y,

are also easily verified. For

H'(z;) = %\” @@= 12 ) (29

1o - @ @)@ = 3) — w(z)
52 o'(z) (x — abw

y
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and hence according to L'Hoprravr’s rule

W"(@)(z — z1) + '(x) — '(x) _ o"(zi)

li(zy) = lim li(z) = lim

T s 20’ (zx) (z — k) 20" (x1)
The polynomial gx(z) = 13(z) therefore satisfies the conditions
0 i+ k),
ne) ={ G0 %:u‘ A
k\+i) — ) "
1 G=k); @ (zs) (= k).
' (k)
From this it follows that for the polynomials
n E\\ﬁuﬁrvg
E 1- @ -2 D2 | ),
A(z) m @_w—H (x — zx) 2 k
B(z) = m@r? = zi) gi(7)
the equations
A(z) =y, A'(z) =0,
B(z) =0, B'(z:) = i
hold; this is however equivalent to (29).
We further write formula (28) in the ».E.B
H(z) = M yrdx(z) + W“H YiBi(x) (30)
k== =
with
| ae =[1-28 o |80,)
w AH*V

(31)
Bi(z) = (z — z)li(2). ‘

Let us now return to the general case. Suppose f(z) is a function defined
on [a, b] which has there a finite derivative of order m = a1 + az 4+ -+ an
where a; = 1.

Now let z1, z2,

@Ml".ﬂﬁlﬁnﬁmu q.ﬂo_”_.u....b_:..lu_.v.

We can now construct the HErMITE interpolation polynomial in accordance
with conditions (26) and then study the difference

f(z) — H(),

where z is a fixed point of [a, b] which is not a node z..

... Z, be nodes lying in [a, b]; we put

(= 1;2,...,1;
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We now define
Q) = (z - 21)%(z — 12)™. .. (z — z,)™
and introduce the function

0(2) = f(z) — H(z) — KQ(2),
where

_[(z) — H()
= Q(x) ' (32)

Then

e (z;) =0 Qﬂrm...i,ﬁ q.HoHH“...“a..JHY
for z;is an a~fold root of Q(z). Moreover, (32) implies that
e(z) = 0.

The function ¢(z) therefore has at least m + 1 roots in [a, b] (taking into
account their multiplicities). From this on the basis of Worww“u theorem we
find .mw least m roots for o (2), at least m — 1 roots for ¢"'(2), and ete. In
particular, ™ (z) has at least one root ¢, But now “ .

e™(2) = f™M(z) — Kml,
whence )

% I7®
m!

}

and it follows that

(m)
J@) = HE@) + 1 g0 (a <t <),

,.HEm is the ﬂmmaﬂ.m interpolation formula with remainder. It follows from
this formula, in a manner analogous to what was done previously, that the
HerMITE polynomials approximate an entire function uniformly when the

wcawmw of nodes (which may be distributed in any fashion) increases without
ound.

§6. Trigonometric Interpolation
Suppose the 27 + 1 points

Zoy T1y X2, . . ., T2, (33)

are given in the half-open interval [0, 27). Tt is then easy to construct a

5. TRIGONOMETRIC INTERPOLATION 19

trigonometric polynomial T'(z) of lowest possible order which assumes pre-
assigned values y1, ¥2, . . . , ¥2. at the nodes (33).

Since
. T —a . alvlw—”gvtaloomﬂ lp._.va_
sin=—5—sin=5—=5|c ) 2

is a trigonometric polynomial of first order,

. X — X L Tp1 . X — Tgyl « = T2n
sin 2 s« o Bl 5 sin 2 ...8In Im
t(z) = 34)
aﬁ v . Ty — o o T — Tr—1 . Tp — Tpyl . T — X2n A
m:ullw!...mE 5 sin 3 ...8In 5

is a trignometric polynomial of nth order (it is important that the number
of factors of the numerator be even).

Clearly
_J0 for ik
() = ,P for i= k.

Hence the polynomial

2n
T(z) = X yute(®) (35)
k=0
satisfies the conditions
T(zs) = s FZ=0,1,...,2n). (36)

The order of T'(z) is at most n. There can be no other polynomials M(z)
from HT which satisfy the given conditions, for otherwise the difference
T(z) — M(z) would be a polynomial of H}, not identically zero, which would
have the 2n + 1 roots (33); this however is a contradiction.

Suppose now that n 4+ 1 nodes
20, L1; -5 - 1 Za 37)
are given in the interval [0, «]; if we put
(cosz — cos xp) . .. (cos z — COS Tx—1)(COS T — COS Tpy1)

...(cosx — cosz,)

awm&u i
(cos z, — co8 xp) . .. (COS Tk — €OS T4—1)(COS T — COS Tiy1)

. «» (co8 Z; — .cO8 Z4)

C(zx) = M yicr(z),

k=0
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The interpolation polynomial for the nodes (40) therefore has the form

. 2n41
| 2 sin m_. (z — z)
T(z) = >y
2n + 157" gin 2= % : (42)
i |
2

which is reminiscent of the DiricHLET integral, and one will note that the

behavior of the polynomials 7'(z) i
s closel :
FOURIER sums. (z) is closely analogous to that of partial

We now seek to determine the ¢ i i
now ¢ oefficients A4, am, b i
by writing it in “‘canonical form” il e

T) =4+ M..U (@m c0s mx + b, sin mz). (43)

m=]

To this end, i i i
P nd, we substitute the expressions for #:(z) obtained from (41) into

H 2n n
T(z) = %M@*ﬁp + 2 Muocm,sna - abu_.

k=0 m=1

From this it follows that

_ H 2n M n 2n
T(zx) = m+1 AM Qwv + G o) Y _”AM Yk COS Sawv.uomg

k=0 me=] k=0

2n
+ Aam ¥k sin Sﬁv sin SaH“ (44)

and hence
2 H 2n
h —3
2n 4+ 1 aMan Yy
N 2n
e M 2n .
Nﬁ. I_.l ”—. o @_k COos s.ﬁb.u muan. = ﬂw.n »MO @-r Sl MIg.
Now if yo, 41, . . ., y2. are the values of some function f(z) at the nodes (40),

.&TOHH _mw._.@ fmﬂcmm Om —umﬂm GO@EOHQH_.._UW kﬁm qu @3 C—URQHHHQQ are Huon..ﬁ_.ﬂmﬂm c:ﬂ H".ngurzz
sums H.OH. ﬂwm H OURIER Oomm.ﬁnms.ﬂm

1 A\N.ﬁ 1 2 1 2x
o .‘.AHV &Hu - ek s
2r ) o K. f(x) cos mz dz, = N. f(z) sinmzdx.  (45)

. M»mwm becomes _.m.wmm. the coefficients 4, an, b approach the integrals (45),

\Mﬁ : M.. %o_&boaw_mw T'(z) approaches the FourIier sum S,(z) of the function
. 18 1s, of course, intended to be only a heuristic i i

not a precisely formulated theorem. consideraion and

CHAPTER 1I

THEOREMS OF NEGATIVE CHARACTER

§1. The Theorems of S. N. BERNSTEIN and G. FABER

Let us consider the following problem: In the interval [a, b] we choose

nodes which form an infinite triangular matrix:

(1
1 U...

(2 (2
1 V“ T2 v_

(3) (3) (3)
ry o, T2, T3, " ﬁmv

® & 8 8 5 & 8 ¥ s s e 8w s

(n) _(n) _(n) (n)
kuaw_uaw. ..._Haa

A I B

Given a function f(z) defined on [a, b], we then construct a sequence Tuaﬁai
of LAGRANGE interpolation polynomials, where in so doing we use as inter-
polation nodes in the construction of Ln(z) the n elements of the nth row of

the matrix (46), such that

H\aﬁahad = %AHM:J k=12,..., n).
One then asks the question: Will L.(z) in this case converge to f(z) at all
points of the interval [a, b]? :

As we already know, the sequence does converge (and even uniformly) for
entire functions f(z). It is desirable to avoid such a strong condition. It
will now be shown that to every matrix (46) there corresponds a class of
functions for which the interpolation process obtained from the matrix con-
verges uniformly.! However, this class is always substantially more restricted
than the class C([a, b]) of all continuous functions on [a, b]. In other words,
there is no universal matrix (46) which is applicable for all continuous func-
tions. The proof of this fact is the substance of FABER’s theorem to which
this section is primarily devoted.

1 This class is never empty, since it contains all entire functions (and—trivially—all

polynomials).
23
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In studying questions of convergence of the .
1 polynomials L,(z) t g
tion f(x), the quantity (z) to a fune

An(z) = M | 1M ()] (47)

plays a major role; here I{"(z) are the basis polynomials of the nth row of
the matrix (46), i.e.

I"(z) = as(z) A&;E = H_._H (x — ﬂwivv.

wh(@)(z — z4) k=1

The function A, (z) is the analogue of the LEBESQUE function which we have

studied in the theory of orthogonal polynomials. Putting
An = max \,(z) 8 5 7 =b} (48)

we formulate

Theorem 1 (G. FaBEr-S. N. BERNSTEIN). For every malriz (46) the in-
equality

Inn
V: v - -
8/ (49)

holds.

Proof. The proof 2 of this important theorem hinges on two lemmas.

H.oBEm.H. Qs.%@ n arbitrary points 6y, O, . .., 6, (0 < 0, < =), there exists
an even trigonometric polynomial T(8) of order at most n — 1 such that
IT©) < 8+/x ¢=1,2...,m) (50)

and which satisfies the inequality
T(@)> Inn (61)

at at least one point « ¢ [0, 7).

Proof. Let cx(0) be those even trigonometric polynomials of order at most
n — 1 for which

y_ J0 for ik,
QQ_VIAH for i= k.

Further, let

*G. Faser [1], 8. N. BERNSTEIN [6]. The proof given in the text is due to Frstr [3].
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_ cosf ,cos20  cos(n—1)8
A== E o

_ cos A:H.T 1)0 i cos ?w+ 2)0 e nOm\;ﬁHﬁ HI 1)0
As we already know ? the following inequality holds for all é:

|A®6) — B(6)| < 4v/m. (52)
Finally, let us introduce the polynomial

B@®)

U6) = A(20) — M.,.L [B(0x + 6) + B(8x — 0)]cx(6),

which is an even trigonometric polynomial. It is easily seen that

[ v ae = w [ v as=o. (53)
(1] —

For A(26) is a trigonometric polynomial without constant term which is
therefore orthogonal to 1 on the interval [—m, 7). Also, B(6x + 6) +
B(6; — 0) is a linear combination of terms of the form cos mé with m > n;
this linear combination is therefore orthogonal to the polynomials c.(8) whose

order is less than n.
Hence, there exists a point « in the interval [0, 7] at which

Ule) = 0.

‘With these remarks in mind, we define

70) = (A0 +a) + AG ~ ] = 3 (B +0) + BO: — leu(0).
This is also an even trigonometric polynomial from H I | *and in particular
T(8:) = [A(6: + a) — B(8: + a)] + [A(6; — @) — B(0: — &)];
therefore, on the basis of (52) it satisfies (50). On the other hand,

T(x) = A(0) + Ula) = A(0)

or
- 1, ... fdz_
T(@) = 145+ +:|Hva\e|_§_

and hence (51) is also satisfied.

3 Volume I, inequality (186).
4 For B(8; + «) and B(6x — «) are constants.
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Lemma 2. Given n arbitrary nodes 1, X2,

«o vy Tutn [a, b), there exists a
polynomial P(z) € H,_y such that

|P(z)| <8v/x

t=1,2...,n) (54)
and which satisfies the inequality

P(c) >Inn (55)
at at least one point ¢ ¢ [a, b).

Proof. This lemma is easily obtained from the previous one. The sub-
stitution
2z — (a+b)

b—a
maps the interval [a, b] onto the interval
the point 6;. If now T'(z) is the tri
was established in Lemma 1, then th

6 = arc cos

[0, 7] and takes the point z; into

gonometric polynomial whose existence
¢ polynomia,

P)=T _Hmwo cos 23 oil?“-S

satisfies inequalities (54) and (55), where

QH@Maoch.Tn.ww.

Returning now to the FABER-BERNSTEIN theorem, we note that the poly-

nomial of Lemma 2 can be written in the form

Pi) = 3 @),

k=1
From this it follows that

1P@)| = 8vr 3 ()],

k=1
and therefore from (55) that

Z Inn
m |L(c)| > e

This holds for arbitrary interpolation nodes in la,

for the nodes occurring in the nth row of our matrix
proved.

b] and hence in particular
. The theorem is herewith
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; ) nts of which all lie in
Theorem 2 (G. FABER). Given a matriz (46) the poin . .
(@, b, there exists a function f(z) e C([a, b]) such that the @.3“@3&&83 polynomial
?M.E_& from the rows of the matriz does not converge uniformly to f(z).

i , icti therefore that there is a

Proof. The proof is by contradiction. Suppose . :

matrix (46) which for every function f(z) e C([a, b]) ensures Eﬁmou.gvoob

<E.mmbno of the interpolation polynomial L.[f, z] = L.(z) to f(z). As above,
we put

M@ = 2@ A = max (@), G2)

k=1
and in particular for z, ¢ [a, b] let
A(2n) = A (57)

We now construct a continuous funetion ¢,(z) for every natural number n
by putting first of all _

on(zs™) =sign I{™(z) (k=1,2,...,n) (58)
and requiring secondly that this function ¢.(z) be linear Umeﬁmm.ﬂ the nodes
2. In order to define it in the entire interval [a, b], we chw still attend to
mﬁw “.S:Sm in the intervals 3 [a, z{)] and ?M.aﬁ b]: let the function be constant
on both these intervals. .

It is clear that everywhere in [a, b]

loa(a) | < 1. G
Also, n
.H:.._”ﬁsm N_L _ W ﬁaﬁﬂhavzmavmw:u = m“— _ PM:VAN._V_ = V:AN:V = An. A@Ou

We now construct an increasing sequence of natural numbers n; < nz <
ng <---, where in so doing we choose n1 such that
Aoy > 2:2-3;
this is possible, since according to Theorem 1 the numbers A, increase with-
@n(T)
3

tion its interpolation process converges uniformly. ‘E:.w.m therefore exists an
index n' such that for all n > n’

La _Hmw..u. au_

5§ We number the nodes in the natural order
a<a < <o <2 b

out bound. Since the function is continuous, according to our assump-

<L
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We now choose an index 72 such that ng > n’, ng > ny, and moreover

An, > 2-3-32,
The function

is then continuous and is less in absolute value gpﬁm + .wlun < 1. We can

therefore find an index n’’ such that for n > n”’

©ny ﬁa».
ﬁ T2 g

We now choose n3 > n”, ng > ng such that in addition

<1.

An, > 2-4-33.

Continuing this process, we obtain the desired sequence Inal,

where for every
index m the inequalities

H\aiﬁﬁa .._l ﬁﬁu + I_l ﬂ“”!w— : H; - H_ A@H.v
A > 2(m 4 1) 3™ (62)
hold. Making use of the numbers 7,,, we now define the function

the continuity of which is obvious. If we define

ons §€ B(z) =

k=1

M ﬁﬁﬁ.ﬁv

k=m+1

then
/@) = A@) + ﬁw].ms + B(2);
whence it follows that

Lon(f; 2] = Luad; 2] + % Lunlonn; @) + LnulB: z].
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According to (61) we have

| La,[4; 7] _ <1 (63)
Moreover,
N Nm (Ttm)
| LualB; 7| MEHA )™ (7) | < max | B@)| m |5 (@),
and hence
| LanlB; ]| S waaan_._w?v_
But now
1 R 64
B e (64
and hence
y-—a- . Ammv
| LanlB; 2]| = 2.3"
Moreover,
L, :. Zn u = W .:..Twaam naL e _NL.::T%“ N:.L_ s _Hs.:a_”.wm N:L_ ’
M ? m =S wa
hence, according to (60), (63), and (65) we obtain
V .7:... Va.:
: s B TR . . |
Lralf; 20e] > 2as 23
and from this according to (62)
Lalfi 20 ) > m- (66)
Hence
lim Lanlf; 2m) = + @, (67)

m—» @

and this precludes uniform convergence of L.[f;z] to f(z) contrary to our
assumption.®

The FaBER theorem shows that for every matrix (46) there exists a MM?.
tinuous function f(z), constructed with the help of the matrix, zpmﬁs H..m
polation process for which does not converge uniformly. The question 1

¢ This method of proof is used very often. I suggest that it be called the method of the
“gliding hump.”
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there is perhaps such a function applicable to all such matrices is then of
interest. This question is answered negatively by

Theorem 3 (J. MARCINKIEWICZ (1]). For every continuous Sunction f(z)
there exists a matriz (46) such that the tnierpolation polynomial obtained Jrom
1t converges uniformly to f(z).

Proof. If of all the polynomials of H,_ 1, P, 1(z) is the one of smallest
deviation from f(z), then there exists an (n 4 1)-termed TcHEBYSHEFF
alternant consisting of the points y; < Y2 <-++ < ynp1 at which the differ-
ence P, 1(z) — f(z) has alternating sign. Now in each interval (s, Yrs1)
there is a root z{™ of the difference in question. We take these roots as the
nodes of the nth row of our matrix (46). The polynomial P,_, (z) is then at
the same time the interpolation polynomial for f(z) corresponding to the
nodes z{™, and we have only to show that the polynomial P,_, (z) converges
uniformly to f(z).

§2. The BERNSTEIN Example

The FABER theorem states that the interpolation polynomial L,(z) does
not always converge uniformly to f(z). This does not exclude the possibility
that the sequence of polynomials L,(z) converge to f(z) at many (or even
all) points. The following example shows that the interpolation process may
diverge everywhere with the exception of single points.

Theorem (S. N. BERNSTEIN). The interpolation polynomial L,(z) for the
function | z | with untformly distributed nodes in the interval [—1, +1] (such
that 2y = —1, z, = +1) converges to | z| at no point of the interval [-1, +1]
with the exception” of the points =1,0, and +1.

Proof. We prove the theorem for a point z such that —1 < z < 0; the
case where 0 < z < 1 is entirely analogous.
We introduce the function

o) = Ac for

-l1=z=0.
z for 0=z=1.

IA TIA

Since z = 2¢(z) — z, it is sufficient to prove divergence of the interpolation
process for the function ¢(z).

7 For the points =1 this is clear, since they are nodal points for every value of n.

1
2. THE BERNSTEIN EXAMPLE 3

We choose the 2n + 1 nodes

e G 2 DD (68)

n
and denote the interpolation polynomial for the function ¢(z) which corre-

sponds to them by Lz.41(z).
From NEwToN’s formula (22) we have

Lons1(z) = lem_\;k — (x —z1)(z —22) ... (x — =)
and from (20)
. T T Iq. .
Afo(-1) = 2 (=1 Q%AL + b
Now forr = n, o AIH + qmv = (, and hence

Akp(—1) =0

z
(1 - - —, and hence
Hmrosma,m:..ln:‘*.sﬁurm“...,:v.ﬁﬁbSA H._:zv -8
fork=n4+m@m=12,...,n)

.

- m—i ~ynti H
D=+=.ﬁm|: = .Mm (~1) Q_.-HS =
or from (25)
| wt (m+n -2

A"e(=1) = (=D T T
Equation (69) now becomes
n _ l_l _ Mv_ 3=+=a
Lawni(®) = 25 (=" Qm: = e

% (4220 G+ De(e-2) . (c-252) @

Here all summands have the same sign (as we shall soon show). Let

141
n

23.[9.

<z

IIA
|

The product

e erz) e Dele- D) (-2 o
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has n + m factors. Among thse the m 4 7 factors

57 i —1 1l 1 —
Aa.*ﬁvu Aa* 3v‘..iﬁaum.mvvﬁAale“....Aallﬁauv
are negative, and the rest are positive. The sign of the product is therefore

(=1)™%  Therefore, all the summands in (70) have the same sign; the
absolute value of this sum is therefore greater than the absolute value of the

last summand, i.e.
@+:Aa.: lmv:.AaI::&
n n

Lz, > =
| Lana(2)] 2 2(2n — 1)(nl)2 ne
From (71)
% _ b
EiE= 0=0,<1),

so that we obtain

| Laas1(z)| 2 2n wu“x:_vw A§ M - Wv A3|IM||1I~ B ﬂl._v

L_0)6a(1,0) (nti-1_ 6.
Aa 3V3A=+av...A n +wﬂv

The righthand side of this inequality becomes no greater if we replace 6,

by 1 in the first n — ¢ — 1 factors and by zero in the last n 4+ ¢ — 1 factors.
Hence

(n—72—1Dln+i- 1!
2(2n — 1)(n!)2

| L2nsa(z) |

1%

Bl — 6.
Let us examine the factor

(n—4—Dln+i— 1!
22n — 1)(n))2

oy =

more closely.
It is clear that

111 ,,.+HA i1 i+1
&= m:iNBIH\:AH.T:I&V H+3I\M+Hv...AH+:fm

Of the ¢ — 1 terms in parentheses the last is the smallest. Hence

1 i+ Hvl

?.VM% H+3Im
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But from (71)
11 .
“._IIMV -z 1—1>—-nz—2,
so that
...Fl _ —nz—2)
o> T3 (1 —2) (73)
whence it follows that
‘ lim o, = + . (74)
n— «©

Until now n was an arbitrary natural number. We now make a special
choice for it. To this end we fix a number g which satisfies the condition

~+a.
2

0<g<

Then for every natural number ¢ the length of the interval q T4 ; e m,v
—r -z

is greater than one so that it contains at least one natural number n:
w.wm —n= m.+||Hm

For this number n (which by appropriate choice of 7 can be made arbitrarily
large)

w+mA|aAsHH|mh
whence
b>q 1—10.>¢
and finally

| Lens1(z)] > ¢*on.
This in conjunction with (74) completes the proof of the theorem.

Addendum. The interpolation process of the theorem converges to the funciion
| z| at the point z = 0, ,

Proof. If the number of nodes is odd, then the point z = 0 is itself a node.
If the number of nodes is even and equal to 2n:

2(k — 1)

zym —14 S (k=1,2,...,2n),
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and then the LaGranGE int i : )
nodes is nterpolation polynomial corresponding to these

2n
Lan(z) = Y |2 (Z—2) ... (&= 21)(@ = Tey1) ... (z — 22,)
k=1 AH» = HC e AH& — H»IHVAH.Q — &w+u.v . mHm _ &mav )
hence
2n
[L2a(0)] = 3 | 212923 . . . 23,]
& xe — z1| .. |3 — Tp—1| |xp — Tapa| ... e = Zau
Noting that
. 2(k — &‘
2n — 1
we find

2n e
_huaev_ = |zze ... Zan| M — (2n — Cm ! )
k=1 2 (k= 1I(2n — K)!

On the other hand
[z122 . . . T2.| = Ep”
Awa = Huma
and hence
| Loa(0)] s LCn = DUP S .

2 Y2n - 1) i (k — DI(2n — k)1

or equivalently

[(2n — DU 24

2 kC5,.

| L2.(0)| <
(0] 2*"~1(2n)1(2n ~ 1) k=1

From StirLiNG's formulg 8

nl = )\Mﬂ&.:smlaﬁ + w,) (lim w, = 0)
we have

[@n — DW* __@m)! _ @)l 14, .
27 (1)? = iy (lim X, = 0).

(2n)! [@n)1]2 —
8 The proof of this formula can be found in Appendix 1 at the end of the book
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Finally, differentiating the identity

2n
Y Chu* = (1 +2)™

k=0
and setting z = 1, we find
2n
Y kChe = 027"
k=1
Therefore

2n 14 s (75)

|L2.(0)| = 5 —7 T

and hence lim Lz2,(0) = 0.

n— o

Remark. S. N. BernstrIN did not investigate the case of z = 0. The
convergence of the interpolation process in this case was first noted in the
thesis of D. L. Bermann. S. M. Losinski proved that the inequality

A

| L2 (0)| < o

holds, which is stronger than (75). The LosINskr inequality follows from
the equation

]

T en-3n P
e _Hwi? - :_H_

the proof of which we shall not undertake here.

§3. An Example Due to MARCINKIEWICZ

As we already know, the divergence of an interpolation process occurs
because the sequence of functions {A\.(z)} is unbounded. When the nodes
are equidistant, the inequality

‘ 2

|Lanns(@)| > 4= (1 = 2)7"7 (< 0)

holds at least for arbitrarily many values of n if not for all such values. If
we note that the function ¢(z) for which we constructed the polynomial
Lzs41(z) is in absolute value not greater than one, then clearly for all n the
estimate

| Loa1(2)] S Azasa(2)
holds.





