Math 554/703I - Analysis I Test 1 - September 20, 2001

Name: _____

Directions: To receive credit, you must justify your statements unless otherwise stated. Answers should be provided in complete sentences.

- 1. Pick exactly two of the following three parts to work: Suppose that F is an ordered field,
 - (a) prove for each $a \in F$, $a \cdot 0 = 0$.

(b) prove that 0 < 1.

(c) if a < b and c < d, prove that a + c < b + d.

1	$(16 \ pts)$
2	$(10 \ pts)$
3	$(15 \ pts)$
4	$(24 \ pts)$
5	$(10 \ pts)$
6	$(15 \ pts)$
7	$(10 \ pts)$
1	I

2. (a) Give a precise definition for a set to be finite.

(b) Give a precise definition for a set to be countably infinite.

- 3. Let A be an nonempty subset of $I\!\!R$.
 - a.) Define 'upper bound' for A.
 - b.) Define 'least upper bound' for A.
 - c.) Prove that least upper bounds are unique.

4. a. State and prove the Archimedean principle.

b. Prove that for each $\epsilon > 0$, there exists a natural number N such that for all $N \le n$ there holds $0 < \frac{1}{n} < \epsilon$.

5. Negate the statement:

for each $\epsilon>0$ there is a natural number N such that for every $n\geq N$ it is implied that $|a_n-a|<\epsilon$

6. For a > 0, and all natural numbers n, prove that

$$1 + na < (1+a)^n$$

7. Prove that if 0 < r < 1 and $\epsilon > 0$, then there exists a natural number n so that $r^n < \epsilon$. (Hint: Problem #6)