Math 554/703I - Analysis I Test 1 - **Solutions**

1. List the axioms for the real numbers.

[See course lecture notes.]

- 2. Let A be an nonempty subset of \mathbb{R} .
 - a.) Define 'upper bound' for A.
 - b.) Define 'least upper bound' for A.
 - c.) Prove that least upper bounds are unique.

[Suppose that α, β are both least upper bounds for A. Since α is an upper bound for A, and β is a least upper bound of A, then $\beta \leq \alpha$. By symmetry, $\alpha \leq \beta$]

3. Prove for each $a \in \mathbb{R}$, $(-a) = (-1) \cdot a$.

[See course lecture notes: But use the fact that additive inverses are unique and observe that $a + ((-1)(a)) = a(1 + (-1)) = a \cdot 0 = 0$.]

- 4. Suppose that IR is an ordered field, prove
 - a) Multiplicative inverses are unique.

[If α, β are both a multiplicative inverse of an element a, then $\alpha = \alpha 1 = \alpha(a\beta) = (\alpha a)\beta = \beta$.]

b) $(ab)^{-1} = a^{-1}b^{-1}$

[Use the previous part, i.e. multiplicative inverses are unique, and observe that $(ab)(a^{-1}b^{-1})=(aa^{-1})(bb^{-1})=1$.]

c) If 0 < x < y, then $x^2 < y^2$.

[Use 0 < x and multiply x < y to get $x^2 < xy$. Use 0 < y and multiply x < y to get $xy < y^2$. Using the transitive property, gives $x^2 < y^2$.]

5. Negate the statement:

'For each $\epsilon > 0$ there exists a natural number N such that for every pair $x, y \in [0, 1]$ which satisfies |x - y| < 1/N, then $|f(x) - f(y)| < \epsilon$.'

[There exists $\epsilon > 0$ such that for each natural number N there exists a pair $x, y \in [0, 1]$ which satisfies |x - y| < 1/N, but $|f(x) - f(y)| \ge \epsilon$.]

6. a) Prove that the natural numbers are not bounded.

[See course lecture notes.]

b) State and prove the Archimedean principle.

[See course lecture notes.]

c) Prove that for each $\epsilon > 0$, there exists a natural number N such that for all $N \leq n$ there holds $\frac{1}{n^2} < \epsilon$.

[Use the Archimedean Principle to find a natural number N so that $\frac{1}{N} < \epsilon$. Notice that if $n \ge N$, then $N \le n \cdot 1 \le n \cdot n$ and so $\frac{1}{n^2} \le \frac{1}{n} \le \frac{1}{N} < \epsilon$]

7. Pick one: Sketch the proof that every open interval (a, b), where a < b, contains a rational (irrational) number.

[See course lecture notes.]

8. a) State the triangle inequality for the real numbers.

$$[|a+b| \le |a| + |b|]$$

b) If $|x-3|<\delta\leq 1$, then prove that |x-2|<2. [Represent (x-2) as (x-3)+1 and apply the triangle inequality: $|x-2|\leq |x-3|+1\leq 1+1=2$.]

Extra Credit: If
$$|x-3| < \delta \le 1$$
, then prove that $|(x^2 - 5x + 7) - (1)| < 2\delta$. $[|(x^2 - 5x + 7) - (1)| = |x^2 - 5x + 6| = |(x - 3)(x - 2)| = |(x - 3)| \cdot |(x - 2)| \le \delta \cdot 2$. $]$