Math 554/703I - Analysis I

Test 1 - Solutions

1. List the axioms for the real numbers.
[See course lecture notes.]
2. Let A be an nonempty subset of \mathbb{R}.
a.) Define 'upper bound' for A.
b.) Define 'least upper bound' for A.
c.) Prove that least upper bounds are unique.
[Suppose that α, β are both least upper bounds for A. Since α is an upper bound for A, and β is a least upper bound of A, then $\beta \leq \alpha$. By symmetry, $\alpha \leq \beta]$
3. Prove for each $a \in \mathbb{R},(-a)=(-1) \cdot a$.
[See course lecture notes: But use the fact that additive inverses are unique and observe that $a+((-1)(a))=a(1+(-1))=a \cdot 0=0$.
4. Suppose that \mathbb{R} is an ordered field, prove
a) Multiplicative inverses are unique.
[If α, β are both a multiplicative inverse of an element a, then $\alpha=\alpha 1=\alpha(a \beta)=(\alpha a) \beta=\beta$.]
b) $(a b)^{-1}=a^{-1} b^{-1}$
[Use the previous part, i.e. multiplicative inverses are unique, and observe that $(a b)\left(a^{-1} b^{-1}\right)=\left(a a^{-1}\right)\left(b b^{-1}\right)=1$.]
c) If $0<x<y$, then $x^{2}<y^{2}$.
[Use $0<x$ and multiply $x<y$ to get $x^{2}<x y$. Use $0<y$ and multiply $x<y$ to get $x y<y^{2}$. Using the transitive property, gives $x^{2}<y^{2}$.]
5. Negate the statement:
'For each $\epsilon>0$ there exists a natural number N such that for every pair $x, y \in[0,1]$ which satisfies $|x-y|<1 / N$, then $|f(x)-f(y)|<\epsilon$.'
[There exists $\epsilon>0$ such that for each natural number N there exists a pair $x, y \in[0,1]$ which satisfies $|x-y|<1 / N$, but $|f(x)-f(y)| \geq \epsilon$.]
6. a) Prove that the natural numbers are not bounded.
[See course lecture notes.]
b) State and prove the Archimedean principle.
[See course lecture notes.]
c) Prove that for each $\epsilon>0$, there exists a natural number N such that for all $N \leq n$ there holds $\frac{1}{n^{2}}<\epsilon$.
[Use the Archimedean Principle to find a natural number N so that $\frac{1}{N}<\epsilon$. Notice that if $n \geq N$, then $N \leq n \cdot 1 \leq n \cdot n$ and so $\left.\frac{1}{n^{2}} \leq \frac{1}{n} \leq \frac{1}{N}<\epsilon\right]$
7. Pick one: Sketch the proof that every open interval (a, b), where $a<b$, contains a rational (irrational) number.
[See course lecture notes.]
8. a) State the triangle inequality for the real numbers.

$$
[|a+b| \leq|a|+|b|]
$$

b) If $|x-3|<\delta \leq 1$, then prove that $|x-2|<2$.
[Represent $(x-2)$ as $(x-3)+1$ and apply the triangle inequality: $|x-2| \leq|x-3|+1 \leq 1+1=2$.]
Extra Credit: If $|x-3|<\delta \leq 1$, then prove that $\left|\left(x^{2}-5 x+7\right)-(1)\right|<2 \delta$. $\left[\left|\left(x^{2}-5 x+7\right)-(1)\right|=\left|x^{2}-5 x+6\right|=|(x-3)(x-2)|=|(x-3)| \cdot|(x-2)| \leq \delta \cdot 2\right.$.

