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Defn 1. Suppose that K C IR. A collection G of open subsets such that

KC | o.
0eg

is called an open cover of K. K has a finite subcover from G if there exist

01,0, ...,0, in G for which
K C U O;.

7=1
Defn 2. K is called compact, if each open cover G of K has a finite subcover.

Theorem 1. The continuous image of a compact set is compact.
Proof. Suppose f : K — IR is continuous and K is compact. Each open cover C of
f[K] can be drawn back to an open cover C of K, by considering the sets

O = f10), 0ecC.

K compact implies that we may draw a finite subcover from C. Each of these
members is the inverse image (under f) from a member of C. These form the
desired subcover of f[K]|. O

Theorem 2. (Heine-Borel) Suppose that a < b, then the interval [a, b] is compact.
Proof. Let C be an open cover for [a, b] and consider the set

A:={a <x <b+1]]a,xz]has a finite open cover from C} .

Note that A is bounded and nonemtpy (since a € A). Let vy := lub(A). It is enough
to show that v > b, since if 1 € A and a < x < x1, then x € A. Suppose instead
that v < b, then there must be some Oy € C such that v € Oy. But Oy is open,
so there exists § > 0 so that Bs(y) C Oy. Since + is the least upper bound for A,
then there is an © € A such that v — 0 < z < v. But x € A implies there are
members Oy, ..., O, of C whose union covers [a, z]. The collection Oy, Oy, ..., O,
covers [a,y + 0/2]. Contradiction, since 7 is the least upper bound for the set A.
Ul

Theorem 3. Fach closed subset C' of a compact set K is compact.
Proof. Let G be an open cover for C'. Let Oy be the complement of C', then Oy
is open and G := G U {Oy} is an open cover for K. There is a finite subcover of



G which covers K and hence C. This subcover (dropping Oy if it appears) is the
desired finite subcover for C'. O

Defn 3. Suppose {a,} is a sequence. A sequence {b;} is called a subsequence of
{a,} if there exists a strictly increasing sequence of natural numbers

ny<ng < ...<ngp<...
such that by =a,,, k=1,2,...

Theorem 4. Suppose that K C IR, then TFAE:

a.) K is compact,

b.) K is closed and bounded,

)
)
c.) each sequence in K has a subsequence which converges to a member of K,
d.)

(Bolzanno-Weierstrass) each infinite subset of K has a limit point in K.

Proof. (a) = (b) : To show that K is bounded, consider the open cover of K con-
sisting of the collection of nested open intervals O,, := (—n,n), n € IN. To show
that K is closed, let zy be a limit point of K. Assume to the contrary that
xg € K. Consider the open cover of K consisting of the collection of nested open
sets O,, :={x € R||x — x9| > 1/n}, n € IN. Any finite subcollection which would
cover K would have union whose complement would be a neighborhood of zy not
intersecting K. This shows that zy could not be a limit point of K.

(b) = (d) : We use the ‘divide and conquer’ method, better known as the ‘bisection’
method. Let A be an infinite subset of K. Since K is bounded, there is an interval
[a, b] such that K C [a,b]. Inductively define the closed subintervals as follows. Let
lag, by| := [a, b]. Either the left or right half of [ag, by] contains an infinite number
of members of K. In the case that it is the right half, set [aq, b1] := [(bo + ao) /2, bo].
Set [a1, b1] equal to the left half of [ag, by] otherwise. Inductively, let [a,11, byy1] be
the half of [a,, b,] which contains an infinite number of members of A. Notice that
the length of this interval is (b — a)/2""1, that the a,’s satisfy a, < ap 1 < ... < b
and so must converge to some real number a < xy < b. Each neigborhood of x
will contain one of the intervals [a,, b,] and hence will contain an infinite number
of members of A, i.e. x( is a limit point of A. This also shows that z( is a limit
point of the closed set K and must therefore belong to K.

(d) = (c) : Let {x,,}°°, be a sequence in K. If the sequence’s image is finite, then
we may construct a constant subsequence which has the value which we may choose
as any of the values of {x,}°°, which is repeated infinitely often. Otherwise, let A



be the range of the sequence. Then A is an infinite subset of K. By the Bolzanno-
Weierstrass property, A must have a limit point (z¢ say) which belongs to K. For
each k € IN, we may find an integer ny larger than those previously picked (i.e.,
ni,...,Nk—1), so that |x,, — x¢| < 1/k. This is the desired subsequence.

(¢) = (b) : If K were not bounded, then there would exist a sequence x,, € K such
that |z,| > n. If this sequence had a subsequence which converged, then it would
have to be bounded. But each subsequence of {x,} is clearly unbounded. To show
that K is closed, we let xy be a limit point of K which is not in K. We can then
find a sequence {z,} from K which converges to zy. By condition (c), this has
to have a subsequence which converges to a member of K. Contradiction. Each
subsequence of a convergent sequence converges to the same limit, in this case x,
which does not belong to K. O

Corollary 1. Each continuous function f on a compact set K is bounded.
Proof. The set f(K) is compact and is therefore bounded. O

Corollary 2. (Extreme Value Theorem) Each continuous function on a compact
set K attains its maximum (resp. minimum).

Proof. The set f(K) is compact and is therefore bounded and closed. Hence the
least upper bound « for f(K) must belong to f(K). Therefore, there is an xy € K
such that v = f(x() and so

f(x) < f(xp), forall x € K.

Similarly, the greatest lower bound of f(K) is attained by some member of K. O

Defn 4. A function f is called uniformly continuous if for each e > 0, 36 > 0 such
that whenever 1, xs € dom(f) and |z — 9| < §, then |f(x1) — f(22)| < e.

Corollary 3. Each continuous function on [a, b] is uniformly continuous.

Proof. Suppose not, then negating the definition implies that there exist an ¢y > 0
such that for each n € IN we can find z,,y, € K with |z, — y,| < 1/n but
|f(xn) — f(yn)] = €. K is compact so we can find a subsequence {z,, }?°; of
{x,}>%; which converges to some zy belonging to K. Notice that {y,, }?>; also
converges to z( (use an €/2 proof). But f is continuous at z, so

€0 < [f(@ny) = fyn)| < |f(2n) = F(@o)| + [f (o) = f(yn)] — 0 as k — oo

which is a contradiction. O



