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Defn 1. A disconnection of a set A is two nonempty sets A1, A2 whose disjoint
union is A and each is open relative to A. A set is said to be connected if it does
not have any disconnections.

Example. The set

(

0,
1

2

)

∪

(

1

2
, 1

)

is disconnected.

Theorem 1. Each interval (open, closed, half-open) I is a connected set.
Proof. Let A1, A2 be a disconnection for I. Let aj ∈ Aj, j = 1, 2. We may
assume WLOG that a1 < a2, otherwise relabel A1 and A2. Consider E1 := {x ∈

A1|x ≤ a2}, then E1 is nonempty and bounded from above. Let a := sup E1. But
a1 ≤ a ≤ a2 implies a ∈ I since I is an interval. First note that by the lemma to

the least upper bound property either a ∈ A1 or a is a limit point of A1. In either
case, a ∈ A1 since A1 is closed relative to I. Since A1 is also open relative to the

interval I, then there is an ǫ > 0 so that Nǫ(a) ∈ A1. But then a + ǫ/2 ∈ A1 and
is less than a2, which contradicts that a is the sup of E1. 2

Theorem 2. If A is a connected set, then A is an interval.
Proof. Otherwise, there would be a1 < a < a2, with aj ∈ A and a 6∈ A. But then
O1 := (−∞, a) ∩ A and O2 := (a,∞) ∩ A form a disconnection of A. 2

Theorem 3. The continuous image of a connected set is connected. The continu-
ous image of [a, b] is an interval [c, d] where c = min

a≤x≤b
f(x) and d = max

a≤x≤b
f(x).

Proof. Any disconnection of the image f([a, b]) can be ‘drawn back’ to form a discon-

nection of [a, b]: if {O1,O2} forms a disconnection for f(I), then
{

f−1(O1), f
−1(O2)

}

forms a disconnection for I = [a, b]. 2

Corollary 1. (Intermediate Value Theorem) Suppose f is a real-valued function
which is continuous on an interval I. If a1, a2 ∈ I and y is a number between f(a1)

and f(a2), then there exists a between a1 and a2 such that f(a) = y.
Proof. We may assume WLOG that I = [a1, a2]. We know that f(I) is a closed
interval, say I1. Any number y between f(a1) and f(a2), belongs to I1 and so there

is an a ∈ [a1, a2] such that f(a) = y. 2

Theorem 4. Suppose that f : [a, b] → [a, b] is continuous, then f has a fixed point,

i.e. there is an α ∈ [a, b] such that f(α) = α.



Proof. Consider the function g(x) := x−f(x), then g(a) ≤ 0 ≤ g(b). g is continuous
on [a, b], so by the Intermediate Value Theorem, there is an α ∈ [a, b] such that

g(α) = 0. This implies that f(α) = α. 2

Note. There are some immediate consequences of these ideas.

• First, we can get a better idea of the structure of general open sets in the real
line. Each open subset of IR is the countable disjoint union of open intervals.
This is seen by looking at open components (maximal connected sets) and

recalling that each open interval contains a rational. Relatively (with respect
to A ⊆ IR) open sets are just restrictions of these sets.

• Connectedness is the basis of root finding: for example with the Bisection
method. Consider the example of solving for polynomial roots, or sin(x) = x

in the interval (0,∞).

• It also permits us to study inverse functions of continuous, strictly monotone

functions. We see that the continuous image under a monotone map f of
a closed interval [a, b] is a closed interval [f(a), f(b)]. That is any continu-
ous strictly monotone increasing function f maps [a, b] one-to-one and onto

[f(a), f(b)]. (Using compactness in the next notes, we will show that in this
settings, inverse functions are also continuous.)


