Math 554/703I - Analysis I Test 3 - April 14, 2004

Name: _____

Directions: To receive credit, you must justify your statements unless otherwise stated. Answers should be provided in complete sentences.

$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} (20 \ pts) \\ (10 \ pts) \\ (10 \ pts) \\ (10 \ pts) \\ (15 \ pts) \\ (15 \ pts) \\ (15 \ pts) \\ (15 \ pts) \\ (10 \ pts) \\ (10 \ pts) \end{array}$

- 1. Give an example of each of the following and (very) briefly justify your answer:
 - (a) A closed set of real numbers that is not connected. <u>One Soln</u>: $\{0, 1\}$ is closed.
 - (b) A set of real numbers that is complete but not connected. <u>One Soln</u>: $[0, 1] \cup [2, 3]$, a subset of the real numbers is complete iff it is closed.
 - (c) A compact set of real numbers that is not connected. <u>One Soln</u>: $[0, 1] \cup [2, 3]$ is closed and bounded but is not connected.
 - (d) A real-valued continuous function that does not satisfy the Intermediate Value Theorem. <u>One Soln</u>: Let dom $(f) = \{0\} \cup [1, 2]$ and f(x) = x on that domain. The intermediate value of $\frac{1}{2}$ is not attained.
 - (e) A real-valued function that is continuous at a point x_0 , but is not differentiable. <u>One Soln</u>: The function f(x) = |x| is continuous at $x_0 = 0$, but is not differentiable there; observe sequential limits of the difference quotient applied to the sequences $\{-\frac{1}{n}\}$ and $\{\frac{1}{n}\}$.
- 2. Prove that each compact set is closed.

Proof: Suppose that x_o be a limit point of the compact set K which does not belong to K. Consider the open sets \mathcal{O}_n which are the complements of the closed balls $C_n = \{x \mid |x - x_0| \leq \frac{1}{n}\}$. Since $x_0 \notin K$, then the collection of \mathcal{O}_n 's form an open cover of K and so must have a finite subcover. Since $\mathcal{O}_n \subset \mathcal{O}_{n+1}$, then the largest set in this finite collection will cover K. Call that set \mathcal{O}_N . But then $B_{\frac{1}{N}}(x_0) \subset C_N$ is disjoint from K. Contradiction, since each $B_{\epsilon}(x_0)$ must contain an infinite number of members of K.

- 3. State and sketch a proof of the **Heine-Borel theorem**. <u>Soln</u>: See course lecture notes as well as daily lecture notes.
- 4. a.) Define **connectedness** for a set of real numbers A.

<u>Soln</u>: See course lecture notes as well as daily lecture notes.

b.) Prove that if a continuous function f is defined on an interval I, then the range of f is an interval.

Proof: A subset of real numbers with the standard metric is connected iff it is an interval. Since the continuous image of a connected set is connected, then the continuous image of an interval is an interval.

- 5. a.) Define **open cover** for a set.
 - b.) Define what it means for a set to be **compact**.
 - c.) Suppose K is compact and $f: K \to \mathbb{R}$ is continuous. Prove that f[K] is compact.

Soln: See course lecture notes as well as daily lecture notes.

6. State and sketch the proof of the Extreme Value Theorem

Soln: See course lecture notes as well as daily lecture notes.

7. State and derive the Product Rule for differentiation.

<u>Soln</u>: See course lecture notes as well as daily lecture notes.

8. Using the **definition** of the derivative and properties of limits, prove that when $f(x) := \sqrt{x}$, then

$$f'(x_0) = \frac{1}{2\sqrt{x_0}}$$

Proof: We just need to show the limit

$$\lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

exists and equals $L = \frac{1}{2\sqrt{x_0}}$. But

$$x - x_0 = (\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})$$

and so

$$\lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

which by the limit theorems for quotients and sums, and the fact that the square root function is continuous at $x_0 > 0$ (and so $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$) implies that

$$\lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \frac{1}{2\sqrt{x_0}}.$$