Name:

\qquad
Directions: To receive credit, you must justify your statements unless otherwise stated. Answers should be provided in complete sentences.

1	$(20 p t s)$
2	$(10 p t s)$
3	$(10 p t s)$
4	$(10 p t s)$
5	$(15 p t s)$
6	$(10 p t s)$
7	$(15 p t s)$
8	$(10 p t s)$

1. Give an example of each of the following and (very) briefly justify your answer:
(a) A closed set of real numbers that is not connected. One Soln: $\{0,1\}$ is closed.
(b) A set of real numbers that is complete but not connected.

One Soln: $[0,1] \cup[2,3]$, a subset of the real numbers is complete iff it is closed.
(c) A compact set of real numbers that is not connected.

One Soln: $[0,1] \cup[2,3]$ is closed and bounded but is not connected.
(d) A real-valued continuous function that does not satisfy the Intermediate Value Theorem. One Soln: Let $\operatorname{dom}(f)=\{0\} \cup[1,2]$ and $f(x)=x$ on that domain. The intermediate value of $\frac{1}{2}$ is not attained.
(e) A real-valued function that is continuous at a point x_{0}, but is not differentiable.

One Soln: The function $f(x)=|x|$ is continuous at $x_{0}=0$, but is not differentiable there; observe sequential limits of the difference quotient applied to the sequences $\left\{-\frac{1}{n}\right\}$ and $\left\{\frac{1}{n}\right\}$.
2. Prove that each compact set is closed.

Proof: Suppose that x_{o} be a limit point of the compact set K which does not belong to K. Consider the open sets \mathcal{O}_{n} which are the complements of the closed balls $C_{n}=\left\{x| | x-x_{0} \left\lvert\, \leq \frac{1}{n}\right.\right\}$. Since $x_{0} \notin K$, then the collection of \mathcal{O}_{n} 's form an open cover of K and so must have a finite subcover. Since $\mathcal{O}_{n} \subset \mathcal{O}_{n+1}$, then the largest set in this finite collection will cover K. Call that set \mathcal{O}_{N}. But then $B_{\frac{1}{N}}\left(x_{0}\right) \subset C_{N}$ is disjoint from K. Contradiction, since each $B_{\epsilon}\left(x_{0}\right)$ must contain an infinite number of members of K.
3. State and sketch a proof of the Heine-Borel theorem.

Soln: See course lecture notes as well as daily lecture notes.
4. a.) Define connectedness for a set of real numbers A.

Soln: See course lecture notes as well as daily lecture notes.
b.) Prove that if a continuous function f is defined on an interval I, then the range of f is an interval.

Proof: A subset of real numbers with the standard metric is connected iff it is an interval. Since the continuous image of a connected set is connected, then the continuous image of an interval is an interval.
5. a.) Define open cover for a set.
b.) Define what it means for a set to be compact.
c.) Suppose K is compact and $f: K \rightarrow \mathbb{R}$ is continuous. Prove that $f[K]$ is compact.

Soln: See course lecture notes as well as daily lecture notes.
6. State and sketch the proof of the Extreme Value Theorem

Soln: See course lecture notes as well as daily lecture notes.
7. State and derive the Product Rule for differentiation.

Soln: See course lecture notes as well as daily lecture notes.
8. Using the definition of the derivative and properties of limits, prove that when $f(x):=\sqrt{x}$, then

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{x_{0}}}
$$

Proof: We just need to show the limit

$$
\lim _{x \rightarrow x_{0}} \frac{\sqrt{x}-\sqrt{x_{0}}}{x-x_{0}}
$$

exists and equals $L=\frac{1}{2 \sqrt{x_{0}}}$. But

$$
x-x_{0}=\left(\sqrt{x}-\sqrt{x_{0}}\right)\left(\sqrt{x}+\sqrt{x_{0}}\right)
$$

and so

$$
\lim _{x \rightarrow x_{0}} \frac{\sqrt{x}-\sqrt{x_{0}}}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{1}{\sqrt{x}+\sqrt{x_{0}}}
$$

which by the limit theorems for quotients and sums, and the fact that the square root function is continuous at $x_{0}>0$ (and so $\lim _{x \rightarrow x_{0}} \sqrt{x}=\sqrt{x_{0}}$) implies that

$$
\lim _{x \rightarrow x_{0}} \frac{\sqrt{x}-\sqrt{x_{0}}}{x-x_{0}}=\frac{1}{2 \sqrt{x_{0}}}
$$

