Math 554.01 - Analysis I Test 1 - September 19, 1997

Name: _____

Directions: To receive credit, you must justify your statements unless otherwise stated. Answers should be provided in complete sentences.

1. a.) Prove
$$(-1)(a) = (-a)$$
.

b.) Prove that a > 0 implies (-a) < 0.

2. Negate the statement "there exists a positive number δ such that for each natural number m there is a natural number k larger than m so that $|f_k - f_m| < \delta$."

- 3. a.) Define countability.
 - b.) Sketch a proof that the set of rationals numbers is countable.

1	(20pts)
2	(10pts)
3	(15pts)
4	(15pts)
5	(15pts)
6	(15pts)
7	(10pts)

- 4. Let A be an nonempty subset of $I\!\!R$. a.) Define 'upper bound' for A.
 - b.) Define 'least upper bound' for A.
 - c.) Prove that if $\beta = 1.u.b. A$, then
 - $\begin{aligned} \beta \text{ is an upper bound for } A, \\ \text{and} \\ \text{if } \epsilon > 0, \text{ then there exists } a \in A \text{ such that } \beta \epsilon < a. \end{aligned}$

5. a.) Prove that \mathbb{I} is not bounded.

b.) State and prove the Archimedean principle.

6. a.) Define $\lim_{n \to \infty} a_n = L$.

b.) Prove $\lim_{n \to \infty} (2n+1)^{-1} = 0.$

7. Suppose that $\{a_n\} \to a$, then prove that $\{|a_n|\} \to |a|$.