Defn. Given $f: A \rightarrow B$ and $g: C \rightarrow D$, the composition $g \circ f$ is defined by $g \circ f(x)=g(f(x))$, where $x \in \operatorname{dom}(f)$ and $f(x) \in \operatorname{dom}(g)$.

1. Using the properties of sequential limits, carefully prove that any polynomial of degree $n$, $P(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n}$ is a continuous function. Here the coefficients $a_{j} \in \mathbb{R}, j=1, \ldots, n$.
2. Using the properties of sequential limits, carefully prove that any rational function $R(x)=\frac{P(x)}{Q(x)}$, where $P$ and $Q$ are polynomials, is continuous on its domain.
3. If $A, B, C, D \subset \mathbb{R}$ and $f: A \rightarrow B$ and $g: C \rightarrow D$ are both continuous functions, then prove that $g \circ f$ is continuous.
4. Detemine the domain of $h(x):=g \circ f(x)$ if $g(y)=\sqrt{y+1}$ and $f(x)=\frac{x-1}{x^{2}-3 x+2}$.
