Math 554-703 I - Analysis I Solutions for Problems 1-2 of Homework Assignment \# 1

1. Using the field axioms, prove that for each $a \in F, a \neq 0$, the multiplicative inverse of a is unique.
Solution: Let a be an arbitrary member of F and suppose that a has multiplicative inverses b and c, that is

$$
\begin{align*}
& a b=1 \tag{1}\\
& a c=1 \tag{2}
\end{align*}
$$

In this case, we can multiply both sides of equation (1) by c to obtain

$$
(a b) c=1 c
$$

Using the field axioms, this reduces to

$$
b(a c)=c
$$

and so $b=c$ using equation (2) and the identity axiom that $b 1=b$.
2. Using any of the results we proved in class (before the statement of this result) carefully prove that $(-1)(-1)=1$.
Solution: We know from our previous results which were established in class that the additive inverse of the additive inverse of an element is the element itself

$$
\begin{equation*}
-(-a)=a \tag{3}
\end{equation*}
$$

We also know for each $a \in F$ that

$$
(-1) b=(-b)
$$

the additive inverse of b. Therefore applying this with $b=-1$ and using equation (3) we obtain

$$
(-1)(-1)=-(-1)=1
$$

