Math 527/CSCE 561 (to begin Tuesday Lecture)

We are attempting to see how accuracy and efficiency are intertwined in the case of Taylor polynomial approximations. The example is to compute $\ln 2$ correct to 8 significant digits using Taylor polynomials applied to $f(x) := \ln(1+x)$ based around a = 0.

As computed in class, the Taylor approximant of degree n is

$$P_n(x) = \sum_{j=1}^n (-1)^{j-1} \frac{x^j}{j}$$

The second form of the error term is

$$E_n(x) = (-1)^n \frac{1}{(1+\xi)^n} \frac{x^{n+1}}{n+1}$$

where ξ is an unknown quantity some place between 0 and 1, and so $0 < 1+\xi < 2$. Therefore, to make this error term small

$$\frac{1}{(1+\xi)^n} \frac{x^{n+1}}{n+1} < .5 \times 10^{-8}$$

with x = 1 and not knowing the value of ξ , we should choose n large enough to guarantee

$$\frac{1}{n+1} < .5 \times 10^{-8}$$

and therefore insure that $\ln 2$ is approximated to 8 significant digits.

What is the degree of the polynomial to do this?

How many computations must be made, at a minimum, to perform the approximation in this way?