Homework 6

Due: June 5th (Friday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (1) Finish the proof of Lemma 13 in Lecture Slides_§3.5.
- (2) Let G be a group and let $a \in G$ be an element of order 30. List the powers of a that have order 2, order 3 or order 5.
- (3) Give the subgroup diagrams of the following groups.
 (a) Z₂₄
 - (b) Z_{36}
- (4) Which of $\mathbf{Z}_{18}^{\times}, \mathbf{Z}_{20}^{\times}$ are cyclic? (*Do not use Primitive Root Theorem.*)
- (5) Find all cyclic subgroups of $\mathbf{Z}_6 \times \mathbf{Z}_3$.
- (6) Prove that \mathbf{Z}_{10}^{\times} is not isomorphic to \mathbf{Z}_{12}^{\times} . (Do not use Primitive Root Theorem.)
- (7) You need to show work to support your conclusions.
 (a) Is Z₃ × Z₃₀ isomorphic to Z₆ × Z₁₅?
 - (b) Is $\mathbf{Z}_9 \times \mathbf{Z}_{14}$ isomorphic to $\mathbf{Z}_6 \times \mathbf{Z}_{21}$?
- (8) Prove that any cyclic group with more than two elements has at least two different generators.
- (9) Prove that any finite cyclic group with more than two elements has an even number of distinct generators.
- (10) Let G be the set of all 3×3 matrices of the form $\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$.
 - (a) Show that if $a, b, c \in \mathbb{Z}_3$, then G is a group with exponent 3.
 - (b) Show that if $a, b, c \in \mathbb{Z}_2$, then G is a group with exponent 4.
- (11) Let G be any group with no proper, nontrivial subgroups, and assume that |G| > 1. Prove that G must be isomorphic to \mathbf{Z}_p for some prime p.