Homework 4

Due: May 25th (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (1) Find HK in \mathbf{Z}_{16}^{\times} , if $H = \langle [3] \rangle$ and $K = \langle [5] \rangle$.
- (2) Find the order of the element ([9]₁₂, [15]₁₈) in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{18}$.
- (3) Prove that if G_1 and G_2 are abelian groups, then the direct product $G_1 \times G_2$ is abelian.
- (4) Construct an abelian group of order 12 that is not cyclic.
- (5) Construct a group of order 12 that is not abelian.
- (6) Let G_1 and G_2 be groups, with subgroups H_1 and H_2 , respectively. Show that $\{(x_1, x_2) \mid x_1 \in H_1, x_2 \in H_2\}$

is a subgroup of the direct product $G_1 \times G_2$.

- (7) (a) Let $C_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = b\}$. Show that C_1 is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
 - (b) For each positive integer $n \ge 2$, let $C_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{n}\}$. Show that C_n is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
 - (c) Show that every proper subgroup of $\mathbf{Z} \times \mathbf{Z}$ that contains C_1 has the form C_n , for some positive integer n.
- (8) Let G_1 and G_2 be groups, and let G be the direct product $G_1 \times G_2$. Let $H = \{(x_1, x_2) \in G_1 \times G_2 \mid x_2 = e_2\}$ and let $K = \{(x_1, x_2) \in G_1 \times G_2 \mid x_1 = e_1\}$.
 - (a) Show that H and K are subgroups of G.
 - (b) Show that HK = KH = G.
 - (c) Show that $H \cap K = \{(e_1, e_2)\}.$
- (9) Let H, K, L be subgroups of the group G, with $H \subseteq K$. Prove that $H(K \cap L) = K \cap HL$.

Note: This is an equality of sets, since they may not be subgroups.

(10) Let F be a field, and let H be the subset of $GL_2(F)$ consisting of all invertible upper triangular matrices. Show that H is a subgroup of $GL_2(F)$.