
Solutions homework 9.

(1) Let fn(x) = x2n

1+x2n . Prove that f(x) = limn→∞ fn(x) exists for all x ∈ R. Does (fn)
converge uniformly to f?
Solution: There are 3 cases: |x| < 1, |x| = 1, and |x| > 1. In case |x| < 1, then
x2n → 0 as n → ∞, which implies that fn(x) → 0 as n → ∞ for |x| < 1. In case
|x| = 1, then x2n = 1 for all n, so fn(x) → 1

2
when |x| = 1. In case |x| > 1, then

divide the numerator and denominator by x2n to see that fn(x) → 1 when |x| > 1.
This shows that f(x) = limn→∞ fn(x) exists for all x, but f is not continuous at
the points x = ±1, which implies that the convergence is not uniform (as each fn is
continuous and uniform limits of continuous functions are continuous).

(2) Define fn : [0, 1]→ [0, 1] by fn(x) = xn(1− x). Prove that fn converges uniformly to
0.
Solution: Note first that from xn ≥ xn+1 on [0, 1] if follows that fn+1(x) ≤ fn(x).
For 0 ≤ x < 1 we have that xn → 0, so also fn(x)→ 0 for 0 ≤ x < 1. For x = 1 we
have fn(1) = 0 for all n, so lim fn(x) = 0 for all x ∈ [0, 1]. From Dini’s theorem it
follows that fn converges uniformly to 0, since the limit function is continuous, (fn)
is monotone and [0, 1] is compact.

(3) Prove that

fn(x) =
nx + sin(nx2)

n
converges uniformly to f on [0, 1], where f(x) = x.

Solution: |fn(x)− f(x)| = | sin(nx
2)

n
| ≤ 1

n
for all x ∈ [0, 1], i.e., d∞(fn, f) ≤ 1

n
→ 0.

(4) Let fn(x) = xne−nx. Prove that
∑

fn converges uniformly on [0,∞](Hint: Use the
Weierstrass M-test).
Solution: Computing the derivative, we find that fn has a maximum at x = 1.
Hence fn(x)| ≤ fn(1) = (1

e
)n. Since 0 < 1

e
< 1 the series

∑
(1
e
)n converges, thus the

series
∑

fn converges uniformly by the Weierstrass M-test.

(5) Prove that
∑∞

n=1
nx2

n3+x3 converges uniformly on [0, 2].

Solution: nx2 ≤ 4n on [0, 2] and n3 +x3 ≥ n3 on [0, 2]. Hence 0 ≤ nx2

n3+x3 ≤ 4n
n3 = 4

n2 .

Since
∑

1
n2 converges, it follows by the Weierstrass M-test that

∑∞
n=1

nx2

n3+x3 converges
uniformly on [0, 2].
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