
Solutions homework 9.

(1) Problem 12-3 First proof: Let {bk} be a sequence in ∩kIk which converges to b.
Then {bk}is a sequence in each Ik, so b ∈ Ik for all k as Ik is a closed set. Hence
b ∈ ∩kIk. This shows that ∩kIk is closed. Note this proof does not use that the Ik’s
are intervals or that the collection of intervals is countable.
Second proof: Let Jk = ∩k

l=1Ik. Then by hw 9-9 Jk is a closed interval. Now
the sequence Jk is a sequence of nested closed intervals, so by the nested interval
theorem the intersection ∩kJk is a closed interval (possibly consisting of one point).
The conclusion follows now, since ∩kJk = ∩kIk.

(2) Problem 12-4 No, take e.g. Ik = [ 1
n
, 2− 1

n
]. Then ∪nIn = (0, 2).

(3) Problem 12-6: (1) Since the sequence converges to e, the upper and lower limit
equal e.

(3) Note − 1
k
≤ sin k

k
≤ 1

k
impies that limk→∞

sin k
k

= 0. On the other hand from

calculus we know limh→0
sin h

h
= 1 (this limit is used to prove that the derivative of the

sine function equals the cosine function and is derived by means of the inequalities
cos x ≤ sin x

x
≤ 1 for 0 < x < π

2
). Putting h = 1

k
we see that limk→∞ k sin 1

k
= 1.

Therefore the sum has limit 1 and again the upper and lower limit equal the limit,
which is 1.

(4) Problem 12-7 This is false. Take e.g. ak = −1 for all k, so that a = −1, and take
bk = 1 + (−1)k. Then {bk} = (0, 2, 0, 2, · · · ) and thus b∗ = lim sup bk = 2. Hence
a.b∗ = −2. On the other hand {akbk} = (0,−2, 0,−2, · · · ) which shows lim sup akbk =
0 6= −2.

(5) Problem 12-12 We will show that if ak ≥ 0 and b∗ = lim sup bk ∈ R, then
lim sup akbk = ab∗. Let ε > 0. Then there exists k0 such that bk < b∗ + ε for all
k ≥ k0. Hence akbk ≤ ak(b

∗ + ε) for all k ≥ k0. This implies that lim sup akbk ≤
lim sup ak(b

∗ + ε) = limk→∞ ak(b
∗ + ε) = a(b∗ + ε). As this holds for all ε > 0 we get

lim sup akbk ≤ ab∗. To get the reverse inequality we use that bk > b∗− ε for infinitely
many k. Thus also akbk ≥ ak(b

∗ − ε) for infinitely many k. If b∗ − ε > 0, we have
ak(b

∗− ε) > (a− ε)(b∗− ε) for infinitely many k, so that lim sup akbk ≥ (a− ε)(b∗− ε)
for all ε > 0, which proves in that case lim sup akbk ≥ ab∗. If b∗ − ε < 0, then
ak(b

∗ − ε) ≥ (a + ε)(b∗ − ε) for infinitely k and this implies now that lim sup akbk ≥
(a + ε)(b∗ − ε) for all ε > 0, which proves in this case lim sup akbk ≥ ab∗.
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