
Solutions for HW 9

Exercise 1.6.38: Solution:

(i) Let x0 ∈ R. Then |f(x)| ≤ |f(x)− f(x0)| + |f(x0)| ≤ ‖f‖TV + |f(x0)| shows that f
is bounded.

(ii) Write f(x) = f(−M) + ‖f‖PV [−M,x] − ‖f‖NV [−M,x] and take the limit M → ∞. It
follows that limM→∞ f(−M) exists. The proof for +∞ is similar.

Exercise 1.6.48: Solution:

(i)

(ii) Clearly F0 is continuous and monotone with F0(0) = 0 and F0(1) = 1. Assume now
that we know this is true for Fn−1. Then it is clear that also Fn is continuous (check
that this is true for x = 1

3
and x = 2

3
separately), as it continuous on each of the

three sub-intervals. To prove that Fn is increasing, note that Fn(x) ≤ 1
2

on [0, 1
3
] and

1
2
≤ Fn(x) on [2

3
, 1] and use that Fn−1 is increasing.

(iii) Again by induction. |F1(x) − F0(x)| = |3
2
x − x| ≤ 1

2
on [0, 1

3
]. On [1

3
, 2
3
] we have

|F1(x)− F0(x)| = |1
2
− x| ≤ 1

2
, and on [2

3
, 1] we have |F1(x)− F0(x)| = |1

2
x− 1

2
| ≤ 1

2
.

hence the inequality holds for n = 0. Assume now it holds for n. Then for x ∈ [0, 1
3
]

1



2

we have that

|Fn+1(x)− Fn(x)| = |1
2
Fn(3x)− 1

2
Fn−1(3x)| ≤ 1

2
· 1

2n−1
=

1

2n
.

Using this estimate we see that for m > n that

|Fm(x)− Fn(x)| ≤ |Fm(x)− Fm−1(x)|+ · · ·+ |Fn+1(x)− Fn(x)| ≤ 1

2n−1
.

Hence the sequence {Fn} is uniformly Cauchy and converges thus uniformly to a
continuous function F . As all Fn are increasing the same holds for F . Moreover
F (0) = 0 and F (1) = 1.

(iv) It is clear that F1(x) = 1
2

on the first middle one-third interval. The same holds for

all Fn for all n ≥ 1. Now F2(x) = 1
4

0n [1
9
, 2
9
] and F2(x) = 3

4
0n [7

9
, 8
9
]. By induction

we can then see that Fn(x) = k
2n

if we number the removed intervals from left to
right by k = 1, · · · , 2n − 1. Since the measure of the union of the removed intervals
equals one, we see that F

′
(x) = 0 a.e.

(v) By continuity of F it suffices to show this for xN =
∑N

n=1 an3−n with N ≥ 1. This
follows easily if we observe that F (xN) = Fk(xN) for all k ≥ N and by induction we
can show that FN(xN) = FN−1(xN−1) + aN

2
2−N .

(vi) This follows from the previous part, by encoding the left endpoints of those intervals
in base 3, using 0’s and 2’s.

(vii) Let x ∈ C. Then there exist unique intervals In = [xn,yn ] as in the previous such that
xn → x and yn → x. Assume F is differentiable at x and assume first that x 6= xn
and x 6= yn for all n. Then

F (x)− F (xn)

x− xn
→ F

′
(x)

and
F (x)− F (yn)

x− yn
→ F

′
(x).

This implies that also

F (yn)− F (xn)

yn − xn
→ F

′
(x).

However by the previous item

F (yn)− F (xn)

yn − xn
=

3n

2n
,

which leads to a contradiction. If x is one of the endpoints we only use the other
endpoint, but the rest of the argument is the same.

Problem 1: Solution: Let h > 0. Then F (h)−F (0)
h

= sin 1/h. Hence D+F (0) = 1,

D+F (0) = −1, D−F (0) = 1, and D−F (0) = −1.
Problem 2: Solution: Let h > 0. Then F (c+ h) ≥ F (c) for all h small enough. Thus for
all δ > 0 we have inf0<h<δ(F (c+ h)−F (c))/h ≥ 0. Thus 0 ≤ D+F (c). The other inequality
follows similarly.


