Solutions Homework 8.

(1) Prove that if $z=x+i y$ and $f(z)=\sqrt{(|x y|)}$, then the real part and imaginary part of f satisfy the Cauchy-Riemann equations at $z=0$, but f is not differentiable at $z=0$.
Solution: $u(x, y)=\sqrt{|x y|}$ and $v(x, y)=0$. Hence $\frac{\partial v}{\partial x}(x, y)=\frac{\partial v}{\partial y}(x, y)=0$ for all (x, y). To find $\frac{\partial u}{\partial x}(0,0)$ we use the definition:

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{h \rightarrow 0, h \in \mathbb{R}} \frac{u(h, 0)-u(0,0)}{h}=0
$$

Similarly $\frac{\partial u}{\partial y}(0,0)=0$. Hence the Cauchy-Riemann equations hold at $z=0$. On the other hand

$$
\frac{f(t(1+i))-f(0)}{t(1+i)}=\frac{|t|}{t(1+i)}
$$

does not have a limit as $t \rightarrow 0$ in \mathbb{R}. Hence $f^{\prime}(0)$ does not exist.
(2) Let $G \subset \mathbb{C}$ be an open and connected set and let $f: G \rightarrow \mathbb{C}$ be a holomorphic function such that $f^{\prime}(z)=0$ for all $z \in G$. Prove that f is constant on G. (Hint: let $S=\left\{z \in G: f(z)=f\left(z_{0}\right)\right\}$ for some fixed $z_{0} \in G$ and show that S is open and closed. You can use from undergraduate analysis that if a real valued differentiable function has zero derivative on an interval, then that function is constant on the interval.)
Solution: Let $z_{0} \in G$ and put $S=\left\{z \in G: f(z)=f\left(z_{0}\right)\right\}$. Then the continuity of f implies that S is closed. Let now $a \in S$. Then there exists $\epsilon>0$ such that $B(a ; \epsilon) \subset G$. Let $z \in B(a ; \epsilon)$ and put $g(t)=f(t z+(1-t) a)$ for $0 \leq t \leq 1$. Then by the chain rule $g^{\prime}(t)=f^{\prime}(t z+(1-t) a)(z-a)=0$ for $0<t<1$, so g is constant on $0 \leq t \leq 1$. Hence $f(z)=g(0)=g(1)=f\left(z_{0}\right)$, and thus $B D(a ; \epsilon) \subset S$. It follows that S is nonempty open and closed subset of G, thus $S=G$.
(3) Let f be holomorphic on the unit disk $B(0 ; 1)$.
a. Prove that if $\operatorname{Re} f$ is constant on $B(0 ; 1)$, then f is constant.

Solution: $u(x, y)=c$ implies $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$ on $x^{2}+y^{2}<1$. From the CauchyRiemann equations we get that $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$ on $x^{2}+y^{2}<1$. This implies that $v(x, y)=$ constant on $x^{2}+y^{2}<1$. Hence $f=u+i v$ is constant on $x^{2}+y^{2}<1$.
b. Prove that if e^{f} is constant on $B(0 ; 1)$, then f is constant.

Solution: If $e^{f(z)}=c$, then $0=\left(e^{f(z)}\right)^{\prime}=f^{\prime}(z) e^{f(z)}$. As $e^{f} \neq 0$, this implies that $f^{\prime}(z)=0$ for all $|z|<1$. This implies that $f=c$ (by the previous problem).
(4) Let $G \subset \mathbb{C}$ be open and let f be holomorphic on G. Let $G^{*}=\{z: \bar{z} \in G\}$ and define $f^{*}(z)=\overline{f(\bar{z})}$ for all $z \in G^{*}$. Prove that f^{*} is holomorphic on G^{*} and express $f^{*}(z)^{\prime}$ in terms of f^{\prime}.
Solution: For $z \in G^{*}$ we have

$$
\frac{f^{*}(z+h)-f^{*}(z)}{h}=\overline{\left(\frac{f(\bar{z}+\bar{h})-f(\bar{z})}{\bar{h}}\right)} \rightarrow \overline{f^{\prime}(\bar{z})}
$$

as $h \rightarrow 0$. Hence f^{*} is holomorphic on G^{*} and $f^{*}(z)^{\prime}=\overline{f^{\prime}(\bar{z})}$
(5) (Quals '04) Let $G \subset \mathbb{C}$ be an open and connected set and let $f: G \rightarrow \mathbb{C}$ be a holomorphic function such that $|f(z)|=C$ for all $z \in G$. Prove that f is constant on G.

Solution: Note if $C=0$, then we are done. Assume $C \neq 0$. Let $f=u+i v$. Then $|f(z)|^{2}=u^{2}+v^{2}=C^{2}$. Taking partial derivatives w.r.t. x and y we get

$$
2 u \frac{\partial u}{\partial x}+2 v \frac{\partial v}{\partial x}=0
$$

and

$$
2 u \frac{\partial u}{\partial y}+2 v \frac{\partial v}{\partial y}=0
$$

on G. Using the Cauchy-Riemann equations we can rewrite the second equation as

$$
-2 u \frac{\partial v}{\partial x}+2 v \frac{\partial u}{\partial x}=0
$$

Multiplying the first equation by u and the third one by v and adding the the two resulting equations we obtain

$$
2\left(u^{2}+v^{2}\right) \frac{\partial u}{\partial x}=0
$$

and thus $\frac{\partial u}{\partial x}=0$ on G. Similarly one sees that $\frac{\partial v}{\partial x}=0$ on G and thus $f^{\prime}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=0$ on G. This implies that f is constant on G.

