Solutions homework 6.

- (1) **Problem 9-2.** (a) A is not bounded below or above.
 - (b) $B = \{\eta | \eta^2 \le 5\}$, so glb $B = -\sqrt{5}$ and lub $B = \sqrt{5}$.
 - (c) C is not bounded below and lub C = 0.
 - (d) Same as (b)
 - (e) Same as (a)
 - (f) $F = \{\xi | |\xi| \le 1\}$, so glb F = -1 and lub F = 1.
 - (g) G = (-1, 0), so glb G = -1 and lub G = 0.
- (2) **Problem 9-7.** False, take e.g. $I_n = (0, \frac{1}{n})$. Then $\bigcap_n I_n = \emptyset$. Note the intersection $\bigcap_{n=1}^{\infty} I_k = \emptyset$ or a single point in general. To see this replace each I_k by the closed interval J_k with the same endpoints as I_k . Then the J_k 's form a nested sequence of closed intervals with $m(J_k) \to 0$, so $\bigcap_{k=1}^{\infty} J_k$ is a single point. Now $\bigcap_{k=1}^{\infty} I_k$ is equal to that single point or \emptyset . To get an example with a single point take $I_k = (\frac{1}{k}, \frac{1}{k})$.
- (3) **Problem 9-8** If $I_1 \supset I_2 \supset \cdots \supset I_n$, then $\bigcap_{k=1}^n I_k = I_n$.
- (4) **Problem 9-9** First Solution: Prove by induction. It is obviously true for n = 1. Assume it holds for n - 1. Then $I = \bigcap_{k=1}^{n} I_k = \bigcap_{k=1}^{n-1} I_k \cap I_n$. By the induction hypothesis we know that $A = \bigcap_{k=1}^{n-1} I_k$ is either \emptyset , a singleton, or a closed interval. Now it is easy to see that $A \cap I_n$ is again either \emptyset , a singleton, or a closed interval. Second Solution: Let $I_k = [\alpha_k, \beta_k]$. If $\bigcap_{k=1}^{n} I_k = \emptyset$, then we are done. Otherwise let $x \in I_k$ for all $k = 1, \dots, n$. Then $\alpha_k \leq x \leq \beta_k$ for all $k = 1, \dots, n$. Thus $\alpha = \max\{\alpha_k : k = 1, \dots, n\} \leq x \leq \beta = \min\{\beta_k : k = 1, \dots, n\}$, so $x \in [\alpha, \beta]$. This shows $\bigcap_{k=1}^{n} I_k \subset [\alpha, \beta]$. We claim that $\bigcap_{k=1}^{n} I_k = [\alpha, \beta]$, which will prove the assertion of the problem. Since $\alpha_k \leq \alpha \leq \beta \leq \beta_k$, we have $[\alpha, \beta] \subset I_k$ for all $k = 1, \dots, n$, so $[\alpha, \beta] \subset \bigcap_{k=1}^{n} I_k$ and we are done.