Solutions for HW 6

Exercise 1.2.18: Solution:

(i.) Without los of generality we can assume £ C A C A’ (otherwise replace A by ANA’).
Then m(A") — m(A) = m(A"\ A). Thus we have to show

m*(A\ E) +m(A'\ A) = m* (4 \ E).

Let G be a measurable set with A D G D A\ E such that m(G) = m*(A\ E).
Similarly, let G; be a measurable set with A" O Gy D A’ \ E such that m(G;) =
m*(A’\ E). Let F = (G1\ (A"\ A))NG. Then F D A\ E and m(F) =m*(A\ E).
Also Gy D FU((A'\A) D A\ E, som(FU A\ A) = m*(A’"\ E). This shows
m*(A"\ E) = m(F)+m(A"\ A) = m*(A\ E) + m(A"\ A) and the proof of (i) is
complete. An alternate way of showing (i) is to show that m,(E) = sup{m(K) : K C
E, K compact}. To see this, observe

m*(A\ E) =inf{m(U) : A\ E C U,U open}
=inf{m(UNA): A\ E C U,U open}
=inf{m(UNA): E°C U,U open}
= inf{m(A\ K) : K C E, K compact}
=m(A) —sup{m(K) : K C E, K compact}

(ii.) Let first my(E) = m*(F). Then find a measurable G with A D G D F and m(G) =
m*(F). Similarly find a measurable set H with A D H D A\ E and m(H) =
m*(A\ E). Le¢t F = A\ H. Then F C E C G C Aand m(G\ F) = m(G) —
m(F) = m*(E) — (m(A) — m(H)) = m*®)~m(E = 0. It now follows easily that
E is measurable. If we use the other identity for m.(E), then for all ¢ > 0 we can
find an open set U D E with m(U) < m*(E) + 5 and a compact set K C E with
m(K) > m*(E) — 5. Now m(U \ K) = m(U) —m(K) < € and the measurability of
E follows. If E is measurable, then m*(A\ E) = m(A) — m(E) = m(A) —m*(E), so

Exercise 1.3.8: Solution: (vi) There exist sequences (f,) and (g,) of bounded simple
functions such that f,(z) — f(z) and g,(x) — g(z) for all x € R%. Then f,(z) + gn(x) and
fngn are simple functions and f,(x)+ g,(z) = f(z)+ g(x) as well as f,(x)gn(x) = f(x)g(z)
for all . Hence f + g and fg are measurable.

Exercise 1.3.15: Solution: From Hw 4 we know that if £/ measurable, then E + x
measurable and m(E) = m(FE + z). This implies immediately that if ¢ is an signed simple
function, then g(- +y) is an unsigned simple function and [ g(z)dz = [ g(x +y) dz. Now, if
0<g<f,gsimplethan 0 < g(-+y) < f(-4+y) andif 0 < g < f(-+y), then0 < g(-—y) < f.
By taking supreme we get that [ f(z)dx = [ f(x + y) da.

Problem 1: Solution: Assume limsup,_, |f(z)| = € > 0. Then by uniform continuity
there exists 0 > 0 such that |z —y| < § implies |[f(z) — f(y)| < §. Then there exist z, T,
r, — oo such that z,.; —x, > 26 and |f(z,)| > 5. This implies that |f(y)| > { for all y €

(xp—9,2,+0). Hence f;;f; |f| dz > % for all n. But 2,1 —x, > 20 implies x,+d < x,41—9

so that the intervals (x, — 0, z, + ) are disjoint. Hence [ |f|dz > Y f;ﬂ"_tf |f| dx = oo.

This contradiction with the integrability of f shows that lim, . |f(x)| = 0.

To get a counter example define f piecewise. Let ¢, = 2% Define first f on [2, 00) as follows.

For n > 2 let f(n) = f(n+ -5) = €,, f(n+ 55) = n, and [ linear and continuous on
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[n,n+ 555], [n+ 55,7 + -5, and [n+ =5, n+1]. Then f positive and continuous on [2, o0)

and f:“ fdx < 325 + €, implies that [,° fdz < co. Moreover limsup,_,, f(z) = co. To
get a function on R extend the above f by defining f(x) = €3¢ on (—o0, 2.



