
Solutions for HW 6

Exercise 1.2.18: Solution:

(i.) Without los of generality we can assume E ⊂ A ⊂ A′ (otherwise replace A by A∩A′).
Then m(A′)−m(A) = m(A′ \ A). Thus we have to show

m∗(A \ E) +m(A′ \ A) = m∗(A′ \ E).

Let G be a measurable set with A ⊃ G ⊃ A \ E such that m(G) = m∗(A \ E).
Similarly, let G1 be a measurable set with A′ ⊃ G1 ⊃ A′ \ E such that m(G1) =
m∗(A′ \ E). Let F = (G1 \ (A′ \ A)) ∩G. Then F ⊃ A \ E and m(F ) = m∗(A \ E).
Also G1 ⊃ F ∪ (A′ \ A) ⊃ A′ \ E, so m(F ∪ (A′ \ A)) = m∗(A′ \ E). This shows
m∗(A′ \ E) = m(F ) + m(A′ \ A) = m∗(A \ E) + m(A′ \ A) and the proof of (i) is
complete. An alternate way of showing (i) is to show that m∗(E) = sup{m(K) : K ⊂
E,K compact}. To see this, observe

m∗(A \ E) = inf{m(U) : A \ E ⊂ U,U open}
= inf{m(U ∩ A) : A \ E ⊂ U,U open}
= inf{m(U ∩ A) : Ec ⊂ U,U open}
= inf{m(A \K) : K ⊂ E,K compact}
= m(A)− sup{m(K) : K ⊂ E,K compact}

(ii.) Let first m∗(E) = m∗(E). Then find a measurable G with A ⊃ G ⊃ E and m(G) =
m∗(E). Similarly find a measurable set H with A ⊃ H ⊃ A \ E and m(H) =
m∗(A \ E). Let F = A \ H. Then F ⊂ E ⊂ G ⊂ A and m(G \ F ) = m(G) −
m(F ) = m∗(E) − (m(A) − m(H)) = m∗(E)−m∗(E = 0. It now follows easily that
E is measurable. If we use the other identity for m∗(E), then for all ε > 0 we can
find an open set U ⊃ E with m(U) < m∗(E) + ε

2
and a compact set K ⊂ E with

m(K) > m∗(E) − ε
2
. Now m(U \K) = m(U) −m(K) < ε and the measurability of

E follows. If E is measurable, then m∗(A \E) = m(A)−m(E) = m(A)−m∗(E), so
m∗(E) = m∗(E).

Exercise 1.3.8: Solution: (vi) There exist sequences (fn) and (gn) of bounded simple
functions such that fn(x)→ f(x) and gn(x)→ g(x) for all x ∈ Rd. Then fn(x) + gn(x) and
fngn are simple functions and fn(x) + gn(x)→ f(x) + g(x) as well as fn(x)gn(x)→ f(x)g(x)
for all x. Hence f + g and fg are measurable.
Exercise 1.3.15: Solution: From Hw 4 we know that if E measurable, then E + x
measurable and m(E) = m(E + x). This implies immediately that if g is an signed simple
function, then g(·+ y) is an unsigned simple function and

∫
g(x) dx =

∫
g(x+ y) dx. Now, if

0 ≤ g ≤ f , g simple than 0 ≤ g(·+y) ≤ f(·+y) and if 0 ≤ g ≤ f(·+y), then 0 ≤ g(·−y) ≤ f .
By taking supreme we get that

∫
f(x) dx =

∫
f(x+ y) dx.

Problem 1: Solution: Assume lim supx→∞ |f(x)| = ε > 0. Then by uniform continuity
there exists δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < ε

4
. Then there exist xn ↑,

xn →∞ such that xn+1 − xn > 2δ and |f(xn)| > ε
2
. This implies that |f(y)| > ε

4
for all y ∈

(xn−δ, xn+δ). Hence
∫ xn+δ
xn−δ |f | dx ≥

δε
2

for all n. But xn+1−xn > 2δ implies xn+δ < xn+1−δ
so that the intervals (xn − δ, xn + δ) are disjoint. Hence

∫
|f | dx ≥

∑
n

∫ xn+δ
xn−δ |f | dx = ∞.

This contradiction with the integrability of f shows that limx→∞ |f(x)| = 0.
To get a counter example define f piecewise. Let εn = 1

2n
. Define first f on [2,∞) as follows.

For n ≥ 2 let f(n) = f(n + 1
n3 ) = εn, f(n + 1

2n3 ) = n, and f linear and continuous on
1



2

[n, n+ 1
2n3 ], [n+ 1

2n3 , n+ 1
n3 ], and [n+ 1

n3 , n+ 1]. Then f positive and continuous on [2,∞)

and
∫ n+1

n
f dx ≤ 1

2
1
n2 + εn implies that

∫∞
2
f dx < ∞. Moreover lim supx→∞ f(x) = ∞. To

get a function on R extend the above f by defining f(x) = ε2e
x−2 on (−∞, 2].


