Solutions homework 5.

Page 128 Problem 3: Using the substitution y = -x we get

$$\frac{g(y) - g(-c)}{y - (-c)} = \frac{f(-y) - f(c)}{y - (-c)} = -\frac{f(x) - f(c)}{x - c}.$$

Now letting $y \to -c^-$ is the same as letting $x \to c^+$, from which the problem follows. **Page 128 Problem 4.** As g(x) = 0 for $x \ge 0$ we clearly have $g'_r(0) = 0$. On the other hand $(g \circ f)(x) = x \sin(\frac{1}{x})$ for x > 0 and $(g \circ f)(0) = 0$. Hence

$$\frac{(g \circ f)(x) - (g \circ f)(0)}{x - 0} = \sin(\frac{1}{x}),$$

for x > 0. It is not difficult to se that $\lim_{x\to 0^+} \sin(\frac{1}{x})$ doesn't exist (consider e.g. what happens if $x_n = \frac{1}{\pi n}$ and $x_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$).

Page 129 Problem 2. True, if f has a maximum at an interior pt c, then for any neighborhood $V \subset S$ of c we have $f(x) \leq f(c)$ on V.

Page 132 Problem 2.

- a. If there exist a < b in I such that f(a) = f(b), then by Rolle's theorem there exists a < c < b such that f'(c) = 0, which contradicts the assumption that $f'(x) \neq 0$ for all x.
- b. Assume f(J) is not an open interval. Then there exists $c \in f(J)$ which is an endpoint of f(J) and thus not interior to f(J). Now c = f(a) for some $a \in I$. As I is open there exist $\epsilon > 0$ that $(a - \epsilon, a + \epsilon) \subset I$. By strict monotonicity of f we have either $c = f(a) \in (f(a - \epsilon), f(a + \epsilon)) \subset f(J)$ or $c = f(a) \in (f(a + \epsilon), f(a - \epsilon)) \subset f(J)$, which shows that c is interior to f(J). Contradiction.
- c. If $(a, b) \subset I$, then there exists an open interval $(c, d) \subset J$ such that f((a, b)) = (c, d)(by essentially the same argument that showed that f(I) = J). Hence $g^{-1}((a, b))$ is open for all open intervals in I. This shows that g is continuous. Now

$$\frac{g(y) - g(c)}{y - c} = \frac{g(y) - g(c)}{(f \circ g)(y) - (f \circ g)(c)} = \frac{g(y) - g(c)}{(f(g(y)) - (f(g(c)))}.$$

If $y \to c$, then $g(y) \to g(c)$. Hence by the differentiability of f we get that the right hand side has limit 1/f'(g(c)) as $y \to c$. It follows that g is differentiable at c and g'(c) = 1/f'(g(c)).

Page 132 Problem 4. Let $L = \lim_{x\to c} f'(x)$. Then if $x_n \to c$ with all $x_n \neq c$ in (a, b) we have by the Mean Value Theorem that

$$\frac{f(x_n) - f(c)}{x - c} = f'(y_n),$$

where y_n is strictly between x_n and c. As $x_n \to c$ we have therefore that also $y_n \to c$, so $f'(y_n) \to L$ as $x \to c$. Hence f'(c) exists and equals L.

Page 132 Problem 5. Let F(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x). Then F is continuous on [a, b] and differentiable on (a, b). Moreover by plugging in we see that F(a) = F(b). It follows from Rolle's theorem that there exist $c \in (a, b)$ such that F'(c) = 0, i.e., [f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c) = 0. The result follows now if we can divide by [g(b) - g(a)], i.e., it follows if $[g(b) - g(a)] \neq 0$. This follows however from Rolle's theorem as $g'(x) \neq 0$ for all $x \in (a, b)$.

Page 132 Problem 7. As the hint states we can assume that $f, g : (a, b) \to \mathbb{R}$ continuous and differentiable on $(a, b) \setminus \{c\}$, where a < c < b. Furthermore $f(x) \to 0$, $g(x) \to 0$ (so that

f(c) = g(c) = 0 and $f'(x)/g'(x) \to L$ as $x \to c$. Moreover $g'(x) \neq 0$ on $(a, b) \setminus \{c\}$. Then by Problem 5 we have that if $x_n \to c$ there exist t_n strictly between x_n and c such that

$$\frac{f(x_n)}{g(x_n)} = \frac{f(x_n) - f(c)}{g(x_n) - g(c)} = \frac{f'(t_n)}{g'(t_n)}.$$

As $x_n \to c$ we also have $t_n \to c$ and thus $f'(t_n)/g'(t_n) \to L$ and the conclusion follows. **Page 132 Problem 8.** False. By the Mean Value Theorem f(3) - f(1) = f'(c)(3-1) = 2f'(c). By assumption $f'(c) = f(c)^2 + 4 \ge 4$, so $f(3) - f(1) \ge 2 \cdot 4 = 8 > 5$.