
Solutions homework 5.

Page 128 Problem 3: Using the substitution y = −x we get

g(y)− g(−c)
y − (−c)

=
f(−y)− f(c)

y − (−c)
= −f(x)− f(c)

x− c
.

Now letting y → −c− is the same as letting x→ c+, from which the problem follows.
Page 128 Problem 4. As g(x) = 0 for x ≥ 0 we clearly have g′r(0) = 0. On the other hand
(g ◦ f)(x) = x sin( 1

x
) for x > 0 and (g ◦ f))(0) = 0. Hence

(g ◦ f)(x)− (g ◦ f)(0)

x− 0
= sin(

1

x
),

for x > 0. It is not difficult to se that limx→0+ sin( 1
x
) doesn’t exist (consider e.g. what

happens if xn = 1
πn

and xn = 1
π
2
+2πn

).

Page 129 Problem 2. True, if f has a maximum at an interior pt c, then for any neigh-
borhood V ⊂ S of c we have f(x) ≤ f(c) on V .
Page 132 Problem 2.

a. If there exist a < b in I such that f(a) = f(b), then by Rolle’s theorem there exists
a < c < b such that f ′(c) = 0, which contradicts the assumption that f ′(x) 6= 0 for
all x.

b. Assume f(J) is not an open interval. Then there exists c ∈ f(J) which is an endpoint
of f(J) and thus not interior to f(J). Now c = f(a) for some a ∈ I. As I is open
there exist ε > 0 that (a− ε, a + ε) ⊂ I. By strict monotonicity of f we have either
c = f(a) ∈ (f(a − ε), f(a + ε)) ⊂ f(J) or c = f(a) ∈ (f(a + ε), f(a − ε)) ⊂ f(J),
which shows that c is interior to f(J). Contradiction.

c. If (a, b) ⊂ I, then there exists an open interval (c, d) ⊂ J such that f((a, b)) = (c, d)
(by essentially the same argument that showed that f(I) = J). Hence g−1((a, b)) is
open for all open intervals in I. This shows that g is continuous. Now

g(y)− g(c)

y − c
=

g(y)− g(c)

(f ◦ g)(y)− (f ◦ g)(c)
=

g(y)− g(c)

(f(g(y))− (f(g(c))
.

If y → c, then g(y)→ g(c). Hence by the differentiability of f we get that the right
hand side has limit 1/f ′(g(c)) as y → c. It follows that g is differentiable at c and
g′(c) = 1/f ′(g(c)).

Page 132 Problem 4. Let L = limx→c f
′(x). Then if xn → cwith all xn 6= c in (a, b) we

have by the Mean Value Theorem that

f(xn)− f(c)

x− c
= f ′(yn),

where yn is strictly between xn and c. As xn → c we have therefore that also yn → c, so
f ′(yn)→ L as x→ c. Hence f ′(c) exists and equals L.
Page 132 Problem 5. Let F (x) = [f(b) − f(a)]g(x) − [g(b) − g(a)]f(x). Then F is
continuous on [a, b] and differentiable on (a, b). Moreover by plugging in we see that F (a) =
F (b). It follows from Rolle’s theorem that there exist c ∈ (a, b) such that F ′(c) = 0, i.e.,
[f(b) − f(a)]g′(c) − [g(b) − g(a)]f ′(c) = 0. The result follows now if we can divide by
[g(b) − g(a)], i.e., it follows if [g(b) − g(a)] 6= 0. This follows however from Rolle’s theorem
as g′(x) 6= 0 for all x ∈ (a, b).
Page 132 Problem 7. As the hint states we can assume that f, g : (a, b)→ R continuous
and differentiable on (a, b) \ {c}, where a < c < b. Furthermore f(x)→ 0, g(x)→ 0 (so that
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f(c) = g(c) = 0) and f ′(x)/g′(x) → L as x → c. Moreover g′(x) 6= 0 on (a, b) \ {c}. Then
by Problem 5 we have that if xn → c there exist tn strictly between xn and c such that

f(xn)

g(xn)
=
f(xn)− f(c)

g(xn)− g(c)
=
f ′(tn)

g′(tn)
.

As xn → c we also have tn → c and thus f ′(tn)/g′(tn)→ L and the conclusion follows.
Page 132 Problem 8. False. By the Mean Value Theorem f(3) − f(1) = f ′(c)(3 − 1) =
2f ′(c). By assumption f ′(c) = f(c)2 + 4 ≥ 4, so f(3)− f(1) ≥ 2 · 4 = 8 > 5.


