
Solutions homework 4.

Page 108 Problem 4: Let (xn) be a Cauchy sequence and let ε > 0. Then there exists
δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < ε. For this δ there exist N such that
|xn − xm| < δ for all n,m ≥ N . Hence |f(xn)− f(xm)| < ε for all n,m ≥ N , i.e., (f(xn)) is
a Cauchy sequence.
Page 108 Problem 5.

a. If f and g are uniformly continuous, then so is f + g. Proof: Let ε > 0 then there
exists δ1 > 0 such that |x − y| < δ1 implies |f(x) − f(y)| < ε

2
. Similarly there

exists δ2 > 0 such that |x − y| < δ2 implies |g(x) − g(y)| < ε
2
. let δ = min{δ1, δ2}.

Then δ > 0 and |x − y| < δ implies |f(x) + g(x) − f(y) − g(y)| < ε. For the
proof that |f | is uniformly continuous, let δ > 0 such that |x − y| < δ implies
|f(x) − f(y)| < ε. Then the inequality ||f(x)| − f(y)|| ≤ |f(x) − f(y)| implies that
|x−y| < δ implies ||f(x|)−|f(y)|| < ε, i.e. |f | is uniformly continuous. Now sup(f, g)
and inf(f, g) are uniformly continuous by the formulas given in class. The product of
two uniformly continuous does not need to be uniformly continuous, e.g., take S = R
and f(x) = g(x) = x. Then f, g are uniformly continuous, but fg is not.

b. Let ε > 0. Then there exists δ > 0 such that|x − y| < δ implies |g(x) − g(y)| < ε.
Now δ1 > 0 such that |x − y| < δ1 implies |f(x) − f(y)| < δ. Now combining these
two we see that |x− y| < δ1 implies |g(f(x))− g(f(y))| < ε.

Page 108 Problem 6. Assume f is unbounded. Then there exist xn ∈ S such that
f(xn)| ≥ n. Now S bounded implies that (xn) has a convergent subsequence (xnk

). Now
(xnk

) is Cauchy implies by problem 4 that (f(xnk
)) is Cauchy. Now Cauchy sequences are

bounded, so (f(xnk
)) is bounded, which contradicts |f(xnk

)| ≥ nk →∞.
Page 123 Problem 4. From the inequality |f(x)| ≤ |x| it follows immediately that f is

continuous at 0. If 0 < xn ∈ Q and xn → 0, then f(xn)−f(0)
xn−0 = 1 for all n, while f(xn)−f(0)

xn−0 = 1
for all n, when xn is irrational. Hence f is not right differentiable at 0. The argument is the
same for left differentiability.
Page 123 Problem 5.

a. Straightforward algebra shows that

f(bn)− f(an)

bn − an
− f ′(c) = [g(bn)− f ′(c)]αn + [g(an)− f ′(c)]βn.

Now [g(bn) − f ′(c)]αn → 0 as n → ∞, since [g(bn) − f ′(c)] → 0 and αn is bounded.
Similarly the other term on the right tends to 0. Hence the term on the left has limit
zero.

b. Take f as in the hint. Then 0 ≤ f(x) ≤ x2 implies that f has derivative zero at 0.
Taking an as in the hint, it is clear that the conclusion of (i) fails.

Extra problem 1. Let (xn) and (yn) be such that xn − yn → 0. Then

f(xn)g(xn)− f(yn)g(yn) = [f(xn)− f(yn)]g(xn)− f(yn)[g(xn)− g(yn)]→ 0,

as the terms on the right go to zero or are bounded.
Extra Problem 2. Since f is bounded on [0, c], it is by periodicity bounded on R. The
restriction of f to [0, 2c] is continuous, and thus uniformly continuous on [0, 2c]. Let now
ε > 0. Then there exists 0 < δ < c such that |x − y| < δ, x, y ∈ [0, 2c] implies that
|f(x) − f(y)| < ε. Let now x < y ∈ R such that y − x < δ. Then there exists an integer
n such that ≤ x − nδ < δ < c. Then y − x < δ < c implies that y − nδ ∈ [0, 2c]. Now
|(y − nδ) − (x − nδ)| < δ implies that |f(x − nδ) − f(y − nδ)| < ε. It follows now from
f(x) = f(x− nδ) and f(y) = f(y − nδ) that |f(x)− f(y)| < ε.
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