

Solutions homework 4.

Problem 1 = Problem 30-1. Solution: Note that $\frac{d(f(x), f(y))}{d(x, y)} \leq cd(x, y)^{\alpha-1}$ implies by taking the limit as $y \rightarrow x$ that $|f'(x)| = 0$ for all x , and thus f is constant.

Problem 2 = Problem 30-8 Solution:

- (1) Note $x(\sqrt{x^2 + 1} - x) = \frac{x(x^2 + 1 - x^2)}{\sqrt{x^2 + 1} + x} = \frac{x}{\sqrt{x^2 + 1} + x} \rightarrow \frac{1}{2}$ as $x \rightarrow \infty$ by dividing first both numerator and denominator by x .
- (2) Observe $x^x = e^{x \ln x}$, so by the next limit we have $\lim_{x \rightarrow 0^+} x^x = e^0 = 1$.
- (3) By L'Hopital's rule $\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \rightarrow 0^+} -x = 0$.
- (4) Put $t = \frac{1}{x}$. Then $\lim_{x \rightarrow \infty} x^{\frac{1}{x}} = \lim_{t \rightarrow 0^+} \frac{1}{t^t} = 1$. Note you can also write $x^{\frac{1}{x}} = e^{\frac{\ln x}{x}}$ and use L'Hospital for the limit $\lim_{x \rightarrow \infty} \frac{\ln x}{x} = 0$.
- (5) By L'Hospital's rule $\lim_{x \rightarrow \infty} \frac{\ln(1+e^x)}{x} = \lim_{x \rightarrow \infty} \frac{e^x}{1+e^x} = 1$.

Problem 3 = Problem 30-9. Solution: f differentiable at x implies that we can write $f(y) = f(x) + (y - x)f'(x) + (y - x)\eta(y)$, where $\eta(y) \rightarrow 0$ as $y \rightarrow x$. This implies that

$$\begin{aligned} \frac{f(x + h_n) - f(x - k_n)}{h_n + k_n} &= \frac{h_n f'(x) + h_n \eta(x + h_n) + k_n f'(x) + k_n \eta(x - k_n)}{h_n + k_n} \\ &= f'(x) + \frac{h_n}{h_n + k_n} \eta(x + h_n) + \frac{k_n}{h_n + k_n} \eta(x - k_n) \rightarrow f'(x) \end{aligned}$$

as $n \rightarrow \infty$, as $0 \leq \frac{h_n}{h_n + k_n} \leq 1$ and $\eta(x + h_n) \rightarrow 0$ and similarly for the other term.

Problem 4 Solution: For $|x| < 1$ we have that $x^{2n} \rightarrow 0$ as $n \rightarrow \infty$. Hence $\lim_{n \rightarrow \infty} f_n(x) = 0$ for $|x| < 1$. If $x = \pm 1$, then $f_n(x) = \frac{1}{2}$ for all $n \geq 1$, so $\lim_{n \rightarrow \infty} f_n(x) = \frac{1}{2}$ for $x = \pm 1$. For $|x| > 1$ we have that $f_n(x) = \frac{1}{x^{2n} + 1} \rightarrow 1$ as $n \rightarrow \infty$. Obviously f is discontinuous at $x = \pm 1$.

Problem 5. Solution: For $x = 0$ we have $f_n(0) = 0$ for all n , so $\lim_{n \rightarrow \infty} f_n(0) = 0$. For $x \neq 0$ put $t_n = nx^2$. Then $\lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \frac{1}{x} \frac{t_n}{e^{t_n}}$. Now by L'Hospital's rule $\lim_{y \rightarrow \infty} \frac{y}{e^y} = \lim_{y \rightarrow \infty} \frac{1}{e^y} = 0$. Hence $\lim_{n \rightarrow \infty} f(x) = 0$. Hence for all $x \in \mathbb{R}$ we have $f_n(x) \rightarrow 0$. To see that f_n does not converge uniformly to 0, note that $\|f_n\| \geq |f_n(x_n)| = \sqrt{n}e^{-1} \rightarrow \infty$ instead of $\|f_n\| \rightarrow 0$.