
Solutions homework 3.

Problem 1. Solution: Assume |f(x)| ≤ M and |g(x)| ≤ N . Let ε > 0. Then there exists
δ1 > 0 such that |f(x) − f(y)| < ε

2N
whenever |x − y| < δ1. Also there exists δ2 > 0 such

that |g(x)−g(y)| < ε
2M

whenever |x−y| < δ2. Let δ = min{δ1, δ2}. Then |x−y| < δ implies
that

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(y)g(x)|+ |f(y)g(x)− f(y)g(y)|
≤ N |f(x)− f(y)|+ M |g(x)− g(y)| < ε.

Problem 2 Solution: Let M = max{|f(x)| : 0 ≤ x ≤ c}. Then by periodicity |f(x)| ≤ M
for all x ∈ R. Let ε > 0. Then [0, 2c] compact im plies that f is uniformly continuous on
[0, 2c]. Let ε > 0. then there exists 0 < δ < c such that |x− y| < δ and x, y ∈ [0, 2c] implies
that f(x)− f(y)| < ε. Let now x, y ∈ R with |x− y| < δ. Assume x < y. Then there exists
n ∈ Z such that x + nc ∈ [0, c]. Then y < x + δ < x + c implies that y + nc ∈ [0, 2c]. Now
|(x + nc) − (y + nc)| < δ implies that |f(x) − f(y)| = |f(x + nc) − f(y + nc)| < ε, so f is
uniformly continuous on R.

Problem 3 = Problem 28-1. (a)

(b) If we take xn = 1
4n , the f(xn) = 0, so limn→∞

f(xn)−f(0)
xn−0

= 0. On the other hand, if we
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take yn = 1
2·4n−1 , then f(yn) = 1

24̇n−1 . Hence in this case limn→∞
f(yn)−f(0)

yn−0
= 1, thus f can’t

be differentiable at 0.

Problem 4 = Problem 28-3.

(1) a is not differentiable at 0, as limx→0+
|x|−0
x−0

= 1, while limx→0−
|x|−0
x−0

= −1.
(2) b is not differentiable at 0, as b is not continuous there.
(3) c is differentiable at 0, provided β0 6= 0. In that case the quotient rule applies.

Problem 5. Let xn = a + 1
n
. Then f(xn)−f(a)

xn−a
= n(f(a + 1

n
)− f(a)), and the result follows.

To get a counterexample it suffices to take f(x) = |x− 1
2
|.


