
Solutions for HW 3

Exercise 1.1.6: Solution:

(1) Let ε > 0. Let A1 ⊂ E ⊂ B1 and A2 ⊂ E ⊂ B2 with m(Bi\Ai) < ε
2

for i = 1, 2. Then
A1∪A2 ⊂ E ∪F ⊂ B1∪B2 and (B1∪B2) \ (A1∪A2) ⊂ (B1 \A1)∪ (B2 \A2) implies
that m((B1 ∪ B2) \ (A1 ∪ A2)) < ε, which implies that E ∪ F is Jordan measurable.
For the intersection note that A1∩A2 ⊂ E∩F ⊂ B1∩B2 and (B1∩B2)\ (A1∩A2) ⊂
(B1 \ A1) ∪ (B2 \ A2) implies that m((B1 ∩ B2) \ (A1 ∩ A2)) < ε, which implies that
E ∩ F is Jordan measurable. The proof that E \ F is Jordan measurable is similar,
using that A1 \B2 ⊂ E \ F ⊂ B1 \ A2. THe symmetrice difference follows now from
E4F = (E \ F ) ∪ (F \ E).

(2) This is obvious.
(3) Let ε > 0. Then there exists elementary sets A1, A2, B1, and B2 such that A1 ⊂

E ⊂ B1, A2 ⊂ F ⊂ B2 and m(Bi) − m(Ai) <
ε
2

for i = 1, 2. Now m(A1 ∪ A2) =
m(A1) + m(A2) implies that m(E ∪ F ) ≥ m(A1) + m(A2) ≥ m(B1) + m(B2) − ε ≥
m(E) + m(F ) − ε. Hence m(E ∪ F ) ≥ m(E) + m(F ). From the definition of the
outer Jordan measure it follows easily that m(E ∪ F ) ≤ m(E) + m(F ), so equality
holds.

(4) E ∪ (F \ E) = F is a disjoint union of elementary sets, so by (3) we have m(E) +
m(F \ E) = m(F ). By (2) we have that m(F \ E) ≥ 0 and the result follows.

(5) See (3).
(6) Follows immediately from m(B + x) = m(B) for a box B.

Exercise 1.2.4: Solution: If d(E,F ) = 0, then there exist xn ∈ E and yn ∈ F so
that d(xn, yn) → 0. Now by compactness we can find a convergent subsequence xnk

which
converges to x0 ∈ E. From d(xnk

, ynk
)→ 0 it follows that also ynk

→ x0. Hence x0 ∈ E ∩F ,
which is a contradiction. Note this proof works for any metric space. An example where the
assertion fails for two closed sets is E = N and F = {n+ 1

n
: n ∈ N}.

Exercise 1.2.5: Solution: We always have m∗,J(E) ≤ m(E) by the remark on the bottom
of page 22. If E = ∪∞n=1Bn is union of almost disjoint boxes, then ∪Nn=1Bn ⊂ E implies

that
∑N

n=1m(Bn) ≤ m∗,J(E). As this holds for all N we get
∑∞

n=1m(Bn) ≤ m∗,J(E). This
completes the proof as we have m(E) =

∑∞
n=1m(Bn).

Exercise 1.2.6: Solution: Let E = [0, 1]\Q. Then the only open set U contained in E is the
empty set, so that sup{m∗(U) : U ⊂ E,U open} = 0. If m∗(E) = 0, then by subadditivity
m([0, 1]) = 0, which is a contradiction. Hence m∗(E) > 0. Using the measurability of E we
can actually see that m∗(E) = 1.
Extra Problem: Solution: Assume first E is Jordan measurable. Then for all ε > 0
there exist elementary sets A ⊂ E ⊂ B with m(B \ A) < ε. We can assume A,B ⊂ [a, b].
Writing A and B as a disjoint union of intervals we can find a partition P of [a, b] so that
each interval in A and B is finite union of the intervals determined by the partition. Then
A ⊂ E implies that the lower sum of χE w.r.t. the partition P is bigger or equal to m(A)
and E ⊂ B implies that the upper sum of χE w.r.t. the partition P is less or equal to m(B).
Hence the difference between the upper and lower sum is less than ε and χE is Riemann

integrable. From m(A) ≤
∫ b
a
χE(x) dx ≤ m(B) it also follows that m(E) =

∫ b
a
χE(x) dx.

Conversely assume now χE is Riemann integrable. Let ε > 0. Then there exists a partition
P of [a, b] so that the upper sum minus the lower sum is less then ε. Let A be the union of
the intervals determined by P which are contained in E. Then m(A) equals the lower sum
of χE for P . Similarly let B be the union of all the intervals determined by P which have
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non-empty intersection with E. Then E ⊂ B and the upper sum of χE for P equals m(B).
Hence m(B \ A) < ε and the result follows.


