Solutions for HW 3

Exercise 1.1.6: Solution:

(1) Let e > 0. Let Ay C £ C By and Ay C I C By with m(B;\ 4;) < § fori = 1,2. Then
Al UA2 CEUF C B1 U B2 and (Bl U Bg) \ (Al UAQ) C (Bl \A1> U (Bg \ Ag) 1mphes
that m((By U Bg) \ (A1 U Ay)) < €, which implies that F U F' is Jordan measurable.
For the intersection note that A;N Ay C ENF C BiNBy and (BN Bs)\ (A1 NAs) C
(Bl \ Al) U (BQ \ AQ) lmphes that m((Bl N BQ) \ (Al N Ag)) < €, which lmphes that
E N F is Jordan measurable. The proof that £\ F' is Jordan measurable is similar,
using that A; \ B, C E\ F C By \ A;. THe symmetrice difference follows now from
EAF = (E\F)U(F\E).

(2) This is obvious.

(3) Let € > 0. Then there exists elementary sets Ay, Ay, By, and By such that A; C
E C By, Ay C F C By and m(B;) — m(4;) < 5 for i = 1,2. Now m(A; U Ay) =
m(A;r) + m(Ay) implies that m(E U F) > m(A;) + m(A2) > m(By) + m(Bs) — € >
m(E) +m(F) —e. Hence m(EUF) > m(E) + m(F). From the definition of the
outer Jordan measure it follows easily that m(E U F) < m(E) + m(F), so equality
holds.

(4) EU(F \ E) = F is a disjoint union of elementary sets, so by (3) we have m(FE) +
m(F \ E) = m(F). By (2) we have that m(F' \ E) > 0 and the result follows.

(5) See (3).

(6) Follows immediately from m(B + x) = m(B) for a box B.

Exercise 1.2.4: Solution: If d(E,F) = 0, then there exist z, € E and y, € F so
that d(z,,y,) — 0. Now by compactness we can find a convergent subsequence xz,,, which
converges to zo € E. From d(z,,,y,,) — 0 it follows that also y,,, — zo. Hence zp € ENF,
which is a contradiction. Note this proof works for any metric space. An example where the
assertion fails for two closed sets is E =Nand F = {n+ = :n € N}.

Exercise 1.2.5: Solution: We always have m, ;(£) < m(E) by the remark on the bottom
of page 22. If E = U | B, is union of almost disjoint boxes, then UY_, B, C E implies
that 2 m(B,) < m. ;(E). As this holds for all N we get 32> m(B,) < m,;(E). This
completes the proof as we have m(E) =Y >°  m(B,).

Exercise 1.2.6: Solution: Let £ = [0, 1]\Q. Then the only open set U contained in F is the
empty set, so that sup{m*(U) : U C E,U open} = 0. If m*(E) = 0, then by subadditivity
m([0,1]) = 0, which is a contradiction. Hence m*(E) > 0. Using the measurability of E we
can actually see that m*(FE) = 1.

Extra Problem: Solution: Assume first F is Jordan measurable. Then for all € > 0
there exist elementary sets A C E C B with m(B \ A) < e. We can assume A, B C [a, b].
Writing A and B as a disjoint union of intervals we can find a partition P of [a,b] so that
each interval in A and B is finite union of the intervals determined by the partition. Then
A C E implies that the lower sum of yp w.r.t. the partition P is bigger or equal to m(A)
and E C B implies that the upper sum of xyg w.r.t. the partition P is less or equal to m(B).
Hence the difference between the upper and lower sum is less than ¢ and yg is Riemann
integrable. From m(A) < fab xe(z)dr < m(B) it also follows that m(E) = ff xe(z)dz.
Conversely assume now xp is Riemann integrable. Let € > 0. Then there exists a partition
P of [a,b] so that the upper sum minus the lower sum is less then €. Let A be the union of
the intervals determined by P which are contained in E. Then m(A) equals the lower sum

of xg for P. Similarly let B be the union of all the intervals determined by P which have
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non-empty intersection with F. Then F C B and the upper sum of xz for P equals m(B).
Hence m(B \ A) < € and the result follows.



