
Solutions homework 2.

Problem 24-4. To prove Aα closed it suffices to show that if xn ∈ Aα for all n ≥ 1 and
xn → x, then x ∈ Aα. Hence let xn ∈ Aα and assume assume xn → x. Then by continuity
f(xn) → f(x), but f(xn) = α for all n, so also f(x) = α, i.e. x ∈ Aα.

Problem 24-15. Let A ⊂ [0, 1] be dense and assume f(a) = g(a) for all a ∈ A. Then for
all x ∈ [0, 1] there exist an ∈ A such that an → x. Then by continuity f(an) → f(x) and
g(an) → g(x). Now f(an) = g(an) for all n implies that f(x) = g(x).

Problem 27-3. First Proof: Let ε > 0. Then there exists δ1 > 0 and δ2 > 0 such that for
all x, y ∈ A with |x− y| < δ1 we have

|f(x)− f(y)| < ε

2
and for all x, y ∈ A with |x− y| < δ2 we have

|g(x)− g(y)| < ε

2
.

Let δ = min{δ1, δ2}. Then for all x, y ∈ A with |x− y| < δ we have

|f(x) + g(x)− f(y)− g(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)| < ε

2
+

ε

2
= ε.

Hence f + g is uniformly continuous.
Second Proof. Let xn, yn ∈ A with xn−yn → 0. Then by uniform continuity f(xn)−f(yn) →
0 and g(xn)− g(yn) → 0. Hence also (f(xn) + g(xn))− (f(yn) + g(yn)) → 0 and thus by the
Theorem from class f + g is uniformly continuous.

Problem 27-4. It was shown in class that g(x) = x is uniformly continuous on R. For
f(x) = sin x, notice that f ′(x) = cos x satisfies |f ′(x)| ≤ 1. Hence | sin x − sin y| ≤ |x − y|,
which implies that f(x) = sin x is uniformly continuous on R. To see that the product
fg is not uniformly continuous, let xn = πn and yn = πn + 1

n
. Then f(xn) = 0 and

f(yn) = cos πn sin 1
n
. Hence |f(xn) − f(yn)| = (πn + 1

n
) sin 1

n
→ π as n → ∞, so fg is not

uniformly continuous. Here we used that

lim
n→∞

n sin
1

n
= lim

x→0

sin x

x
= 1.

Problem 27-5. We will show that if f is uniformly continuous on (0, 1), then f is bounded.
Let f be uniformly continuous on (0, 1) and let ε = 1. Then there exists δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < 1. Let N be the smallest natural number so that
Nδ > 1 and define xn = nδ for n = 1, 2, · · · , N − 1. Then (0, 1) ⊂ ∪N−1

n=1 (xn − δ, xn + δ).
Hence for all x ∈ (0, 1) there exists n such that |xn − x| < δ. Thus |f(x) − f(xn)| < 1, so
|f(x)| ≤ |f(xn)| + 1. Let M = max{|f(x1)| + 1, · · · , |f(xN−1)| + 1}. Then |f(x)| ≤ M for
all x ∈ (0, 1).
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