Solutions homework 2.
Problem2-5: Counterexample: Take 7" = {1,2,3} and A; = {0,2}, Ay = {1,2} and A3 =
{0,1}.
Problem 2-6. Let first x € A;. Assume x ¢ N,enA,. Then there exists at least one positive
integer such that x ¢ A,. Since x € A, there is a smallest natural number n such that
x € A, but x ¢ A,.1, i.e., there exists a natural number n such that =z € A, \ A,41. This
shows
(1) A c [ J A\ A
neN
Now assume = € [UpenAn \ Ant1] U [MnenAy]. Then @ € UpenA, \ Apyr or € NyenA,. In
the first case z € A, \ A,y for soem n, so x € A, C Ay implies then that x € A;. In the
second case x € A, for all n > 1, so certainly x € A;. Hence we equality in (1). To prove the
sets are pairwise disjoint, let n < m. Then x € A, \ A, implies z ¢ A,11. Asm >n —|— 1
we have A, C A,11 and thus « ¢ A,,. This implies that [4,, \ An11] N [An \Am+1]
x € Ay \ Apyq then o ¢ Ay, which shows o ¢ N, A,,. Hence [A, \ A1) N[N, AL =
Problem 2-12.
(a) n ~ n, since n —n = 0 is even. If n ~ m, then there exists an integer k such that
n—m = 2k. Then m —n = 2(—k) is also even, so m ~ n. Now assume that n ~ m
and m ~ p. Then there exist integers k,[ such that n —m = 2k and m — p = 2[. Hence
n—p=n—m+m—p=2k+2l =2(k+1)is even, so n ~ p. Thus ~ is an equivalence
relation.
(b) Not an equivalence relation, e.g. it is not reflexive 2 » 2.
(c) Note (a,b) ~ (¢,d), if a —b = ¢ —d. Now it is easy to check that ~ is an equivalence
relation.
(d) If A # 0, then A = A, so it is not reflexive.
Problem 3-3. Yes, f(AU B) = f(A) U f(B). Proof: Let first y € f(AU B). Then there
exists © € AU B such that y = f(z). Now 2z € Aorz € B, soy = f(x) € f(A) or
y = f(z) € f(B), ie., y € f(A)U f(B). Conversely, if y € f(A) U f(B), then y € f(A)
ory € f(B). If y € f(A), then there exists © € A such that y = f(z) and if y € f(B),
then there exists x € B such that y = f(z). Either way, there exists © € AU B such that
y = f(z). Thus y € f(AUB).
Problem 3-6. For g o f to have an inverse it needs to be one-to-one and onto. We claim
that g o f is one-to-one and onto if and only if f is one-to-one and the restriction g4y of g
to the range of f is one-to-one and onto. Note f does not need to be onto, and there is no
restriction on the values of g on B\ f(A) in case f is not onto. To prove the claim, note first
that the range go f(A) of go f equals g(f(A)), from which the necessity and sufficiency part
of the onto condition is obvious. For the one-to-one part of the claim assume first that f is
one-to-one and the restriction g ;.4 of g to the range of f is one-to-one. Let x # y in A. Then

f(x) # f(y) in f(A) (as f is one-to-one) and thus g(f(x)) # 9(f(y)) (as g;s(4) is one-to-one),
i.e., go f(x) # go f(y) and thus g o f is one-to-one. Conversely, if f is not one-to-one, then

there exists & £y in A with f(z) = (). Then go f(z) = g(f(x)) = g(/(y)) = go [(y) and
g o f is not one-to-one. Similarly if g¢(4) is not one-to-one, then g o f is not one-to-one.
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