
Solutions homework 2.

Problem2-5: Counterexample: Take T = {1, 2, 3} and A1 = {0, 2}, A2 = {1, 2} and A3 =
{0, 1}.
Problem 2-6. Let first x ∈ A1. Assume x /∈ ∩n∈NAn. Then there exists at least one positive
integer such that x /∈ An. Since x ∈ A1, there is a smallest natural number n such that
x ∈ An but x /∈ An+1, i.e., there exists a natural number n such that x ∈ An \ An+1. This
shows

(1) A1 ⊂

[⋃
n∈N

An \ An+1

]
∪

[⋂
n∈N

An

]
.

Now assume x ∈ [∪n∈NAn \ An+1] ∪ [∩n∈NAn]. Then x ∈ ∪n∈NAn \ An+1 or x ∈ ∩n∈NAn. In
the first case x ∈ An \ An+1 for soem n, so x ∈ An ⊂ A1 implies then that x ∈ A1. In the
second case x ∈ An for all n ≥ 1, so certainly x ∈ A1. Hence we equality in (1). To prove the
sets are pairwise disjoint, let n < m. Then x ∈ An \ An+1 implies x /∈ An+1. As m ≥ n + 1
we have Am ⊂ An+1 and thus x /∈ Am. This implies that [An \ An+1] ∩ [Am \ Am+1] = ∅. If
x ∈ An \ An+1 then x /∈ An+1, which shows x /∈ ∩nAn. Hence [An \ An+1] ∩ [∩nAn] = ∅.
Problem 2-12.
(a) n ∼ n, since n − n = 0 is even. If n ∼ m, then there exists an integer k such that
n − m = 2k. Then m − n = 2(−k) is also even, so m ∼ n. Now assume that n ∼ m
and m ∼ p. Then there exist integers k, l such that n − m = 2k and m − p = 2l. Hence
n − p = n − m + m − p = 2k + 2l = 2(k + l) is even, so n ∼ p. Thus ∼ is an equivalence
relation.
(b) Not an equivalence relation, e.g. it is not reflexive 2 � 2.
(c) Note (a, b) ∼ (c, d), if a − b = c − d. Now it is easy to check that ∼ is an equivalence
relation.
(d) If A 6= ∅, then A � A, so it is not reflexive.
Problem 3-3. Yes, f(A ∪ B) = f(A) ∪ f(B). Proof: Let first y ∈ f(A ∪ B). Then there
exists x ∈ A ∪ B such that y = f(x). Now x ∈ A or x ∈ B, so y = f(x) ∈ f(A) or
y = f(x) ∈ f(B), i.e., y ∈ f(A) ∪ f(B). Conversely, if y ∈ f(A) ∪ f(B), then y ∈ f(A)
or y ∈ f(B). If y ∈ f(A), then there exists x ∈ A such that y = f(x) and if y ∈ f(B),
then there exists x ∈ B such that y = f(x). Either way, there exists x ∈ A ∪ B such that
y = f(x). Thus y ∈ f(A ∪B).
Problem 3-6. For g ◦ f to have an inverse it needs to be one-to-one and onto. We claim
that g ◦ f is one-to-one and onto if and only if f is one-to-one and the restriction g|f(A) of g
to the range of f is one-to-one and onto. Note f does not need to be onto, and there is no
restriction on the values of g on B \f(A) in case f is not onto. To prove the claim, note first
that the range g ◦f(A) of g ◦f equals g(f(A)), from which the necessity and sufficiency part
of the onto condition is obvious. For the one-to-one part of the claim assume first that f is
one-to-one and the restriction g|f(A) of g to the range of f is one-to-one. Let x 6= y in A. Then
f(x) 6= f(y) in f(A) (as f is one-to-one) and thus g(f(x)) 6= g(f(y)) (as g|f(A) is one-to-one),
i.e., g ◦ f(x) 6= g ◦ f(y) and thus g ◦ f is one-to-one. Conversely, if f is not one-to-one, then
there exists x 6= y in A with f(x) = f(y). Then g ◦ f(x) = g(f(x)) = g(f(y)) = g ◦ f(y) and
g ◦ f is not one-to-one. Similarly if g|f(A) is not one-to-one, then g ◦ f is not one-to-one.
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