Solutions for HW 11

Problem 1: Solution:

a. Let $f \in L^{\infty}(X,\mu)$. Then $\int_X |f|^r d\mu \leq \mu(X) ||f||_{\infty}^r < \infty$, so $f \in L^r(X,\mu)$. Now let $1 \leq p < r$ and $f \in L^r(X,\mu)$. Put $s = \frac{r}{p}$. Then s > 1. Let $1 < t < \infty$ such that $\frac{1}{s} + \frac{1}{t} = 1$. Now apply Hölder's inequality to get

$$\int |f|^p \, d\mu \le \left(\int |f|^{ps} \, d\mu\right)^{\frac{1}{s}} \mu(X)^{\frac{1}{t}} = \|f\|_r^{\frac{1}{s}} \mu(X)^{\frac{1}{t}} < \infty.$$

To see that the inclusions are strict, note that $f(x) = x^{-\frac{1}{r}}$ is not in $L^r([0.1])$, but is in $L^p([0,1])$ for all $1 \le p < r$. Also $f(x) = x^{-\frac{1}{s}} \in L^r([0,1])$ for s > r, but not in $L^{\infty}([0.1])$.

b. Let $f \in L^{\infty} \cap L^1$. Then $\int |f|^p d\mu = \int |f| |f|^{p-1} d\mu \leq ||f||_{\infty}^{p-1} \int |f| d\mu < \infty$. Now let $f \in L^p$. Let $E = \{x : |f(x)| \geq 1\}$. Then $\mu(E) \leq \int |f|^p d\mu < \infty$. Let $h = f\chi_E$. Then by part **a.** $h \in L^1(E, \mu)$, so $h \in L^1(X, \mu)$. Now g = f - h satisfies |g(x)| < 1 for all x.

Problem 2: Solution: From Hölder's inequality with p = q = 2 we have

$$\left(\int_{[0,1]} xf(x) \, dx\right)^2 \le \left(\int_0^1 x^2 \, dx\right) \left(\int_{[0,1]} |f(x)|^2 \, dx\right).$$

Problem]3: Solution: Let $\epsilon > 0$. Then by Egorov's Theorem there exists E_{ϵ} with $m(E_{\epsilon}^{c}) < \epsilon^{q}$ such that f_{n} converges uniformly to 0 on E_{ϵ} . Let N be such that $|f_{n}(x)| < \frac{\epsilon}{m(E)}$ for all $n \geq N$. Then

$$\int |f_n| \, dx = \int_{E_{\epsilon}^c} |f| + \int_{E_{\epsilon}} |f| \le \|f_n \chi_{E_{\epsilon}^c}\|_p m(E_{\epsilon}^c)^{\frac{1}{q}} + \frac{\epsilon}{m(E)} m(E_{\epsilon}) < 2\epsilon$$

for all $n \geq N$.

Problem 4: Solution:

(1) Observe first that also $|g| \leq M$ a.e. and thus $|(g_n - g)f|^p \leq 2^p M^p |f|^p$ a.e. It follows now from the Dominated Convergence Theorem that

$$\int |(g_n - g)f|^p \, dx \to 0$$

(2) Using the triangle inequality we have $||g_n f_n - fg||_p \le ||f_n g_n - fg_n||_p + ||(g_n - g)f||_p \le M||f - f_n||_p + ||(g_n - g)f||_p \to 0.$