
Solutions for HW 11

Exercise 1.6.49: Solution:

(iv) One checks easily that |
√
x − √y|/|x − y| = 1/(

√
x +
√
y) on (0, 1], which implies

that f(x) =
√
x is not Lipschitz on [0, 1].Moreover from calculus we have for x 6= 0

that f ′(x) = 1
2
√
x
. From the Fundamental theorem of Calculus we have that

f(x) = f(ε) +

∫ 1

ε

f ′(t) dt.

letting ε ↓ 0 we get by the Monotone Convergence theorem

f(x) =

∫ 1

0

f ′(t) dt,

which implies that f is absolutely continuous.
(v) Already seen that the Cantor function f is continuous on [0, 1]. As [0, 1] is compact

this implies that f is uniformly continuous. if f would be absolutely continuous, then
f ′(x) = 0 a.e. implies that f is constant, which is a contradiction. Hence f is not
absolutely continuous.

Problem 1: Solution: Since absolutely continuous functions are of bounded variation we

get
∫ b
a
|F ′(x)| dx ≤ ‖F‖TV [a,b]. For the other direction, let a = x0, · · ·xn = b be a partition

of [a, b]. Then we get
n∑
i=1

|F (xi)− F (xi−1)| =
n∑
i=1

|
∫ xi

xi−1

F ′(x) dx|

≤
n∑
i=1

∫ xi

xi−1

|F ′(x)| dx =

∫ b

a

|F ′(x)| dx.

This implies that ‖F‖TV [a,b] ≤
∫ b
a
|F ′(x)| dx and the proof is complete.

Problem 2: Solution: As a > 0 we have that |F (x)| ≤ xa → 0 as x → 0, so F is
continuous at 0. Also for x 6= 0 we have F ′(x) = axa−1 sin 1

xb
− bxa−b−1 cos 1

xb
. Hence

|F ′(x)| ≤ axa−1+ bxa−b−1 ∈ L1[0, 1], so F ′ ∈ L1[0, 1]. For ε > 0 the function F ′ is continuous
on [ε, 1], and thus bounded. This implies that F is Lipschitz on [ε, 1] and thus absolutely
continuous on [ε, 1]. From observation in class it follows that F is absolutely continuous
Problem 3: Solution: Since fn is absolutely continuous and fn(0) = 0 we have fn(x) =∫ x
0
f ′n(t) dt. Hence

|fn(x)− fm(x)| ≤
∫ 1

0

|f ′n(t)− f ′m(t)| dt→ 0

uniformly in x as n,m → ∞. Thus there exists f : [0, 1] → R such that fn converges
uniformly to f . To prove f is absolutely continuous, observe that {f ′n} is a Cauchy sequence
in L1([0, 1]). Hence there exists g ∈ L1([0, 1]) such that ‖f ′n − g‖1 → 0. This implies that∫ x

0

f ′n(t) dt→
∫ x

0

g(t) dt

as n→∞ for every x ∈ [0, 1] (even uniformly in x). Hence f(x) =
∫ x
0
g(t) dt, which implies

that f is absolutely continuous.
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