Solutions homework 1.

(1) Prove that [-1; 1) is not compact by using the definition of a compact set (to get credit for the problem, use the definition and not any theorems about compact sets).

Proof: Let $O_n = (-1, 1 - \frac{1}{n})$. Then $[-1; 1) \subset \bigcup_n O_n$, but [-1; 1) can't be covered by $\bigcup_{n=1}^N O_n$ for any N, as $1 - \frac{1}{2N} \notin \bigcup_{n=1}^N O_n$.

(2) What is an interior point? Prove that $\frac{1}{4}$ is an interior point of (0; 2].

Proof: p is an interior point of E if there exists $\epsilon > 0$ such that $(p - \epsilon, p + \epsilon) \subset E$. Let $\epsilon = \frac{1}{4}$. Then $(\frac{1}{4} - \epsilon, \frac{1}{4} + \epsilon) = (0, \frac{1}{2}) \subset (0; 2]$.

- (3) Let $a_1 = \sqrt{6}$ and $a_{n+1} = \sqrt{6+a_n}$ for $n \ge 1$. **a.** Show that $a_n \le 3$ for all $n \ge 1$. For n = 1 we have $a_1 = \sqrt{6} \le \sqrt{9} = 3$. Assume now that $a_n \le 3$. $a_{n+1} = \sqrt{6+a_n} \le \sqrt{6+3} = 3$. Hence by induction $a_n \le 3$ for all $n \ge 1$.
 - **b.** Show that $\{a_n\}$ is an increasing sequence. For n = 1 we get $a_2 = \sqrt{6 + \sqrt{6}} \ge \sqrt{6} = a_1$. Assume now that $a_{n+1} \ge a_n$. Then $a_{n+2} = \sqrt{6 + a_{n+1}} \ge \sqrt{6 + a_n} = a_{n+1}$. It follows by induction that $\{a_n\}$ is an
 - $a_{n+2} = \sqrt{6 + a_{n+1}} \ge \sqrt{6 + a_n} = a_{n+1}$. It follows by induction that $\{a_n\}$ is an increasing sequence.

Then

- c. Explain why $\{a_n\}$ converges. Every bounded increasing sequence converges (to the supremum of the sequence).
- **d.** Determine the value of $\lim_{n\to\infty} a_n$. Let $a = \lim_{n\to\infty} a_n$. Then $a_{n+1} = \sqrt{6+a_n}$ implies that $a = \sqrt{6+a}$. Hence $a^2 = 6 + a$, so a = 3 or a = -2. This implies a = 3, as $a \ge a_1 \ge \sqrt{6}$.
- (4) Complete the table below indicating Int(E) (the interior of E), the set of isolated points of E, and whether E is open, closed, both, or neither. An answer of "open" or "closed" in the next to last column will mean that you think E is "open and not closed" or "closed and not open" respectively. You do not need to show work on this problem.

E	$\operatorname{Int}(E)$	Isol. pts. of E	Open? or Closed?	Compact
(-1,1]	(-1,1)	none	neither	no
$(0,\infty)\cap\mathbb{Q}$	Ø	none	neither	no
\mathbb{R}	\mathbb{R}	none	both	no
$[2,\infty)$	$(2,\infty)$	none	closed	no

(5) Suppose p is in the closure of two sets A and B.

a. Must p be in the closure of $A \cup B$? Justify your answer. Yes. Every neighborhood of p will contain $q \in A$ with $q \neq p$ and observe $q \in A$ implies $q \in A \cup B$.

b. Must p be in the closure of $A \cap B$? Justify your answer. No. Take e.g. A = (0, 1), B = (1, 2), and p = 1.