

Solutions for HW 3

Problem 1.2: 6. By the triangle inequality $|x - y| = |(x - a) + (a - y)| \leq |x - a| + |a - y| < \epsilon + \epsilon = 2\epsilon$.

Problem 1.2: 8.

a. From $a_1 \leq |a_1|, \dots, a_n \leq |a_n|$ it follows that

$$a_1 + \dots + a_n \leq |a_1| + \dots + |a_n|$$

and from $-a_1 \leq |a_1|, \dots, -a_n \leq |a_n|$ it follows that

$$-(a_1 + \dots + a_n) \leq |a_1| + \dots + |a_n|.$$

Combining these two inequalities we get

$$|a_1 + \dots + a_n| \leq |a_1| + \dots + |a_n|,$$

which is the desired inequality.

b.

$$|a_1| = \left| \sum_{k=1}^n a_k - \sum_{k=2}^n a_k \right| \leq \left| \sum_{k=1}^n a_k \right| + \left| \sum_{k=2}^n a_k \right| \leq \left| \sum_{k=1}^n a_k \right| + \sum_{k=2}^n |a_k|,$$

which is equivalent to the required inequality.

Problem 1.2: 9. From $\|a| - |x|\| \leq |x - a| < \frac{|a|}{2}$ we conclude that $-\frac{|a|}{2} < |x| - |a| < \frac{|a|}{2}$. Hence $\frac{|a|}{2} < |x| < \frac{3|a|}{2}$.

Problem 1.2: 15.

- a. $(-\sqrt{6}, \sqrt{6})$.
- b. $[2, \infty)$.
- c. $[-2, 1)$
- d. $(-\infty, 1]$.
- e. $(-2, 0)$.