Solutions for HW 14

Problem 2.2:12
Note first that
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Let € > 0. Then there exists NV such thatn%r:,)<efor all n > N. Hence

n%g—mi%}<§+§:6foralln,m2]\7.

Problem 2.2:14 Let x,, = (—1)". Then |z,,41 — x,| = 2 for n. Hence by
taking € < 2 we can never have that |z, — z,,,| < € for all n,m > N.
Problem 2.2:18

a. Denote z, = >, ®&*. Then
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From the example right after Definition 2.11 we know that given
€ > 0 there exists N such that ka:nﬂ # <eforallm>n>
N. Hence {z,} is Cauchy and thus convergent.

b. Replace sink by (—1)* in part a. The rest is identical.

c. Denote z,, =Y ,_, (_;)k. Then
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Hence {z,} is Cauchy and thus convergent. Alternate solution:
Since g, = (—1+3)+(—3+7) -+ +(—5—5+355) and each term
in brackets is < 0, we see that {z,} is a decreasing sequence.
By writing 2, = —1 4 (53 — 3) + -+ + 5 we also see that

Zon is bounded below by —1. Hence lim x5, exists. Similarly
lim 29, exists, since {x9,_1} is increasing and bounded above

by 0. From x5, — x9,_1 — 0 as n — oo it follows that lim x4, =
lim 25,1, and this implies lim z,, exists.

Problem 2.2:26
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a. Observer2+---+r"+1:r2(1+...+7~n71>:%ﬁ1”:.
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b. Observe >y, r?% =370 (r})F = == -
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c. Observe Y7 (1 —r)F = % -1

3 .

1



