Homework 9.

- (1) Let $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$. Prove that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in \mathbb{R}$. Does (f_n) converge uniformly to f?
- (2) Define $f_n: [0,1] \to [0,1]$ by $f_n(x) = x^n(1-x)$. Prove that f_n converges uniformly to 0.
- (3) Prove that

$$f_n(x) = \frac{nx + \sin(nx^2)}{n}$$

converges uniformly to f on [0, 1], where f(x) = x.

- (4) Let $f_n(x) = x^n e^{-nx}$. Prove that $\sum f_n$ converges uniformly (Hint: Use the Weierstrass M-test).
- (5) Prove that $\sum_{n=1}^{\infty} \frac{nx^2}{n^3+x^3}$ converges uniformly on [0,2].