

Homework 8.

- (1) Let $G \subset \mathbb{C}$ be an open and connected set and let $f : G \rightarrow \mathbb{C}$ be a analytic function such that $f'(z) = 0$ for all $z \in G$. Prove that f is constant on G . (Hint: let $S = \{z \in G : f(z) = f(z_0)\}$ for some fixed $z_0 \in G$ and show that S is open and closed. You can use from undergraduate analysis that if a real valued differentiable function has zero derivative on an interval, then that function is constant.)
- (2) Let f be analytic on the unit disk $B(0; 1)$.
 - a. Prove that if $\operatorname{Re} f$ is constant on $B(0; 1)$, then f is constant.
 - b. Prove that if e^f is constant on $B(0; 1)$, then f is constant.
- (3) Find all solutions of
 - a. $e^z = -i$.
 - b. $\sin z = 0$.
 - c. $\ln z = 1 + i$.
- (4) Let $G \subset \mathbb{C}$ be open and let f be analytic on G . Let $G^* = \{z : \bar{z} \in G\}$ and define $f^*(z) = \overline{f(\bar{z})}$ for all $z \in G^*$. Prove that f^* is analytic on G^* and express $f^*(z)'$ in terms of f' .
- (5) (Quals '04) Let $G \subset \mathbb{C}$ be an open and connected set and let $f : G \rightarrow \mathbb{C}$ be a analytic function such that $|f(z)| = C$ for all $z \in G$. Prove that f is constant on G .