Homework 8

- 1. Expand $\frac{1}{(1-z)^2}$ and $\frac{1}{(1-z)^3}$ in a power series around z = 0.
- 2. Expand $\frac{2z+3}{z+1}$ in a power series in powers of z-1 (i.e., around z=1). What is the radius of convergence of the series.
- 3. If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R, what is the radius of convergence of $\sum_{n=0}^{\infty} a_n (2z)^n$ and of $\sum_{n=0}^{\infty} a_n^2 z^n$.
- 4. If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R_1 and $\sum_{n=0}^{\infty} b_n z^n$ has radius of convergence R_2 , prove that $\sum_{n=0}^{\infty} a_n b_n z^n$ has radius of convergence R where $R \ge R_1 R_2$.
- 5. Show that

$$\operatorname{Log}(1-z) = \sum_{n=1}^{\infty} -\frac{z^n}{n}$$

for |z| < 1, by proving that both sides are holomorphic on |z| < 1, agree at z = 0, and have the same derivative on |z| < 1.