

Homework 7.

(1) Let f be continuous on $[0, 1]$. Prove that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) = \int_0^1 f(x) dx.$$

(Hint: Look at the proof that continuous functions are Riemann integrable.)

(2) Use problem 1 to compute the following limit (you can use calculus to evaluate the definite integral)

$$\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{k}{n^2 + k^2}.$$

(3) Let $f, g, h : [a, b] \rightarrow \mathbb{R}$ be continuous and let $g, h : (a, b) \rightarrow (a, b)$ be differentiable with $g(x) \geq h(x)$ for all x . Define $F(x) = \int_{h(x)}^{g(x)} f(t) dt$. Find $F'(x)$. Hint: do first the case that one of g or h is constant.

(4) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous. For $a > 0$ define $g(x) = \int_{x-a}^{x+a} f(t) dt$. Prove that g is differentiable and find $g'(x)$.

(5) Let $f : [0, 1] \rightarrow \mathbb{R}$ be continuous. Prove that

$$\int_0^1 f(x^n) dx \rightarrow f(0),$$

as $n \rightarrow \infty$. Hint: Find first $b < 1$ so that $\int_b^1 |f(x^n)| dx + |f(0)|(1-b) < \frac{\epsilon}{2}$. Then use that the sequence $f_n(x) = f(x^n)$ converges uniformly to $f(0)$ on $[0, b]$.