Homework 6, due October 12

1. page 50: 47

2. page 50: 48

3. page 149: 20

4. page 157: 28

5. Let (X, d) be a metric space and $A \subset X$ a non-empty subset of X. Define the distance from x to A by

$$d(x, A) = \inf\{d(x, y) : y \in A\}$$

- **a.** Show $x \in \bar{A}$ if and only if d(x, A) = 0.
- **b.** Show

$$|d(x,A) - d(y,A)| \le d(x,y).$$

- **c.** Show that $f_A(x) = d(x, A)$ is uniformly continuous on X.
- **d.** Let now A and B be disjoint closed subsets of X. Prove that there exists a continuous function f on X such that f(x) = 0 on A and f(x) = 1 on B. (Hint: Consider the function $f(x) = \frac{f_A(x)}{f_A(x) + f_B(x)}$.)